Hyperparameter Optimization with SHERPA

Lars Hertel, Julian Collado, Peter Sadowski, Pierre Baldi
University of California Irvine, University of Hawai'i at Manoa

December 7th, 2018

UNIVERSITY
of HAWAI'T
MANOA

UCIRVINE



Need for a New Library

» Hyperparameter optimization is critical in machine learning.
» A variety of powerful algorithms have been introduced:
» Bayesian Optimization (Multi-task BO, FABOLAS,
Freeze-Thaw)
» Bandit based methods (Hyperband, Successive Halving)

» Evolutionary type methods (Population Based Training)
» Neural Architecture Search (NAS, Efficient NAS, NAO)

No single algorithm is optimal in all settings, or in all stages of
development; model development is a process that typically
requires exploration followed by fine-tuning.



Need for a New Library

SHERPA

Enables researchers to experiment, visualize, and scale quickly.

Spearmint Auto-WEKA HyperOpt GoogleVizier Sherpa

Early Stopping No No No Yes Yes
Dashboard/GUI Yes Yes No Yes Yes
Distributed Yes No Yes Yes Yes
Open Source Yes Yes Yes No Yes

# of Algorithms 2 1 2 3 5




Quickstart

To run Sherpa on a single machine, simply import Sherpa and
define the parameters to be optimized, the algorithm, and how to
train the model using those parameters. A pseudocode example for
Keras:

import sherpa
study = sherpa.Study(params, algorithm)
for trial in study:
model = define_model(trial)
clbk = study.keras_callback(trial)
model.fit (X, Y, callbacks=[clbk])
study.finalize(trial=trial)



Diversity of Algorithms

Optimizing hyperparameters is a process. Use one algorithm for
exploration, another for fine-tuning, and yet another to satisfy
those reviewers. Sherpa currently implements five core algorithms:

» Random Search
» Grid Search
> Local Search — greedy hill-climbing, one direction at a time.

» Bayesian Optimization using a Gaussian Process and Expected
Improvement Acquisition function.

» Population Based Training (PBT)[2].



Custom Algorithms

Creating custom algorithms is easy. These simply need to specify
which hyperparameters to evaluate next based on the results of
previous trials, and may take advantage of more information than
just the final loss value, such as the entire loss trajectory of each
trial or other metrics. They may also choose to start from a
partially-trained model, as in the Population Based Training
algorithm.

class CustomAlgorithm(Algorithm):
def get_suggestion(params, results):

return next_setting



Scaling Up with a Cluster

Sherpa can automatically run parallel evaluations on a cluster using
a job scheduler such as SGE. Simply provide a Python script that
takes a set of hyperparameters as arguments and performs a single
trial evaluation. A database collects the partial results in real-time,
and the hyperparameter optimization algorithm decides what to do
next.



Visualization Dashboard

» Parallel Coordinates: Axes
of hyperparameters and
metrics.

» Table: Details of completed
trials.

» "Stop Trial” Button: Stop a
particular trial early.

» Line Chart: Trajectories of
objective e.g. validation loss.



Visualization Dashboard

Real-time monitoring: Analysis:
> |s training unstable for any » How well have we explored
HP settings? the HP space?
» Do some HPs have little » Do best HPs differ from
impact? what was expected?
» Are HP ranges appropriate? » Is there a consistent pattern

among the best HPs?



Recommendations

General Strategy:

» Start by picking a lot of HPs to tune with wide ranges. Then
iteratively narrow down to the important HPs and appropriate
ranges.



Recommendations

Grid Search:

» Useful when trying to understand the effect of one or two
hyperparameters. Don't use with more hyperparameters than
that. Don't use for a " global” search.



Recommendations

Random Search:

» Great for getting a full picture of the effect of all involved
hyperparameters. Make sure not to discretize continuous
variables or you're throwing away useful information.



Recommendations

Bayesian Optimization:

» Go to when one just wants to run one global HP optimization.
Especially when model training is fast and number of
hyperparameters is not too big this is optimal. More efficient
than Random Search, but results will be biased.



Recommendations

Local Search:

» Use this to explore tweaks to a baseline. Does not require as
many trials as Grid Search or Random Search, but has no
guarantees to find global minimum.



Recommendations

Population Based Training:

» Unique in that it can find schedules for training
hyperparameters (optimization HPs, regularization HPs).
Great for learning rate, batch size, or momentum. Since it
may be difficult to recreate schedule might want to use this
last.



Summary
» Sherpa is an open-source hyperparameter optimization library
for machine learning.

» Optimize your model using a variety of powerful and
interchangeable algorithms.

» Write custom algorithms.
» Run on a laptop or a cluster.

» Visualize progress in an interactive dashboard.



Where to find SHERPA

ﬁ pip install parameter-sherpa

O https://github.com/LarsHH/sherpa

https://parameter-sherpa.rtfd.io

1)
(i


https://github.com/LarsHH/sherpa
https://parameter-sherpa.rtfd.io

References

) ) )

Li et al., Hyperband: A novel bandit-based approach to hyperparameter
optimization, JMLR 2018

Jaderberg et al., Population Based Training of Neural Networks, arXiv
2017

Swersky et al., Freeze-thaw Bayesian optimization, arXiv 2014

Zoph et al., Neural architecture search with reinforcement learning, arXiv
2016

Wu et al., Bayesian optimization with gradients, NIPS 2017



	Motivation
	Features

