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The DUNE Experiment
• DUNE is a next-generation neutrino oscillation experiment

• Far Detectors (FD) are 800 miles from the neutrino beam source
• Four modules, each with 10,000 ton of liquid argon

• High power muon neutrino beam produced at Fermilab
• Can switch polarity to produce a muon antineutrino beam

• Look for the appearance of electron (anti)neutrinos at the FD
• Measure CP-violation
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NB: I will only write neutrino from now on,
but the same is applicable for antineutrinos



Ingredients for the CP-violation analysis
• We need to consider two signal channels and their backgrounds

• Charged current  νμ disappearance – main background is NC 1π±

• Charged current  νe appearance – main background is NC 1π0

• Primary goal:
• Classify the neutrino flavour as νe ,νμ , ντ or NC

• Secondary goal:
• Can we go beyond flavor classification to individual interaction mode 

classification?
• Different event classes will have different energy resolutions and systematic 

uncertainties, so separation can provide increased sensitivity
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Far Detector Data
• The Far Detectors contain three wire readout planes

• This provides three “images” of each neutrino interaction 

• Simulated electron neutrino interaction (signal)
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Far Detector Data
• The Far Detectors contain three wire readout planes

• This provides three “images” of each neutrino interaction

• Simulated electron neutrino interaction (signal)

• Electron produces the highlighted shower, beginning at the vertex
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Far Detector Data
• The Far Detectors contain three wire readout planes

• This provides three “images” of each neutrino interaction

• Simulated neutral current π0 interaction (background)
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Far Detector Data
• The Far Detectors contain three wire readout planes

• This provides three “images” of each neutrino interaction

• Simulated neutral current π0 interaction (background)

• π0 decay photon showers are displaced from vertex
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Image Recognition
• Fine-grained detail of LArTPCs lends itself to image recognition

• The human eye is a remarkably good image recognition tool
• Once you know what to look for, it is fairly easy to find distinguishing 

features of different types of interactions

• Realistically, the experiment will produce too much data for 
scanning the interactions by eye

• We need to be able to train a computer to do this task
• Recent years have shown rapid development of automated image 

recognition. One of the most promising approaches is the Convolutional 
Neural Network (CNN)
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Convolutional Neural Networks
• CNNs are used to classify images by applying filters to small 

patches of the image (using a convolution)
• Scans over the image with a number of N x N pixel filters
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Convolutional Neural Networks
• CNNs are used to classify images by applying filters to small 

patches of the image (using a convolution)
• Scans over the image with a number of N x N pixel filters
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Convolutional Neural Networks
• CNNs are used to classify images by applying filters to small 

patches of the image (using a convolution)
• Scans over the image with a number of N x N pixel filters
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Convolutional Neural Networks
• CNNs are used to classify images by applying filters to small 

patches of the image (using a convolution)
• Scans over the image with a number of N x N pixel filters
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• Each filter extracts some 
feature from the image

• For example, filter 1 may 
look for tracks

• Filter 2 might look for 
showers



Convolutional Neural Networks
• CNNs are used to classify images by applying filters to small 

patches of the image (using a convolution)
• Scans over the image with N x N pixel filters

• Then move onto the next patch of the image and repeat the 
process
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Convolutional Neural Networks
• The output from each filter then forms the basis of the next layer 

which can include further filters

• Different architectures can be considerably more complex than 
the above toy example
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DUNE CNN introduction
• The initial DUNE CVN was based on the NOvA implementation

• In the last year we have moved to a completely new architecture 
and framework
• We now use a SE-ResNet[1,2] based architecture

• Helps preserve the fine-grained detail deeper into the network
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[1] H. Kaiming et al., Deep residual learning for image recognition, CoRR, arXiv 1512.03385, 2015
[2] J. Hu et al., Squeeze-and-Excitation Networks, arXiv 1709.01507, 2017
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size
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First few layers treat the 
three views separately
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Training and using the CNN
• Use millions of images of simulated neutrino interactions with the 

true neutrino flavour known
• Allows the CNN to learn the features of each type of neutrino interaction
• The CNN filters are not predefined – it needs to learn which filters to use 

to extract the information required to classify events

• Once the CNN is trained it is applied to images with no truth 
information attached – eventually the experimental data

• The CNN gives probabilities for each event to be the following: 
• Charged-current                          and neutral-current (all flavours)
• Outputs sum to one
• Use these probabilities for the event selection
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Selecting Electron Neutrinos
• Electron neutrino probability spectra from the DUNE CVN
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Electron Neutrino Efficiency
• Select all events that are 

more than 70% likely to be 
electron neutrinos

• Over 90% selection 
efficiency in the flux peak

• Efficiency better for 
antineutrinos due to 
typically cleaner final state 
(neutron instead of proton)
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Selecting Muon Neutrinos
• Muon neutrino probability spectra from the new CVN
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Muon Neutrino Efficiency
• Select all events that are 

more than 50% likely to be 
muon neutrinos

• Over 90% selection 
efficiency in the flux peak

• Efficiency better for 
antineutrinos due to 
typically cleaner final state 
(neutron instead of proton)
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CP-Violation Sensitivity – May 2018

• Same selection criteria
• P(νe) > 70%

• P(νμ) > 50%

• Very large improvement 
over the previous CVN

• Exceeded the DUNE 
conceptual design report 
sensitivity
• Very big milestone for DUNE!
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Robustness

• We will use protoDUNE to test the CVN on real data
• There are no neutrinos at protoDUNE, but we can use single particles 

extracted from events to approximate simple neutrino interactions

• Select individual reconstructed objects and pass into the CVN
• Cosmic muon tracks mimic CCQE νμ interactions

• Beam electron showers mimic CCQE νe events

• The CVN should return classifications of CC νμ and CC νe with no hadronic
system, respectively

• We will also use fake data studies to ensure robustness against 
systematic effects, including those from alternative event 
generators
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Summary
• The DUNE CVN provides powerful neutrino interaction flavour

classification
• Hope to demonstrate good performance of exclusive final-states in the 

coming months

• ProtoDUNE provides an excellent opportunity to test the CVN on 
data using single particles to mimic simple neutrino interactions

• Further improvements will provide diminishing returns on the 
experimental sensitivity
• The focus now shifts to ensuring robustness and equal performance when 

applied to data and simulation
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