

GENIE update – a personal view

Steve Dytman, Univ. of Pittsburgh

NusTec 11 December, 2018

- group changes
- v3 + reweighting
- model advances, plans
- electron scattering
- v4

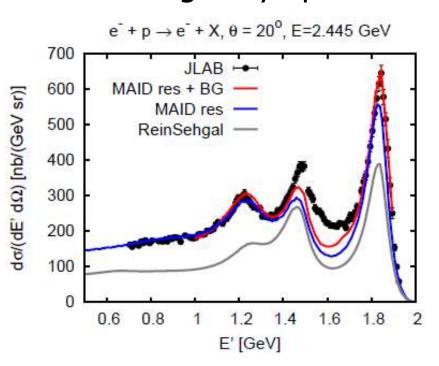
GENIE group changes

FNAL

- After contributing many fantastic advances, Gabe Perdue has left GENIE for Quantum Computing
- Walter Giele (theory), Steven Gardiner (expt postdoc) joined
- Group here (including me) key in recent reweighting release
- Liverpool group Andreopoulos, Roda, Dennis, Tena-Vidal
 - New fitting code
- Dubna group Kakorin, Naumov, and Kuzmin
 - Important debugging work on Rein-Sehgal...
 - Pauli blocking in Rein-Sehgal resonance model
- MIT group Hen, Ashkenazi, Padadopoulou
 - Bug fixes, additions to electron scattering section

GENIE v3.0.0

- Collects models into Comprehensive Model Configurations (CMC), I prefer to call them model sets
 - Most compatible physics (too many energy scales to truly compatible)
 - Options to match energy scale of each experiment
 - Models are as good as existing data, theory
 - Not done, new contributions essential (data, tunes, theory)
 - New and improved FSI (cascade similar to NuWro)

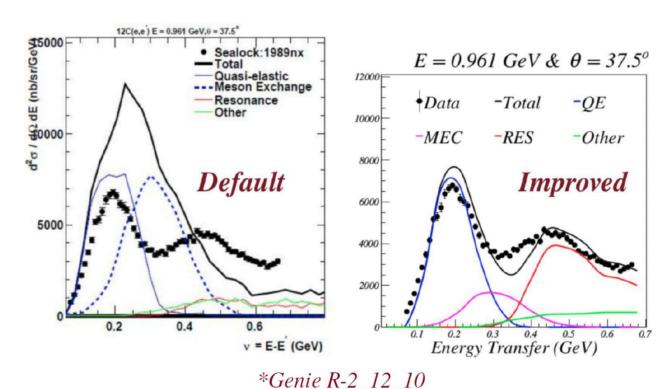

Presents new tunes

- Only deuterium data for now, more later
- Compatible with each model set (e.g. Rein-Sehgal, Berger-Sehgal)
- Sometimes expanded resonance region (larger W_{cut})
- Provide full error analysis for each

Repeat comparison from NUINT14

Complaints about Rein-Sehgal often assume same masses, width, and form factors as 1981 paper.

GENIE regularly updates res params

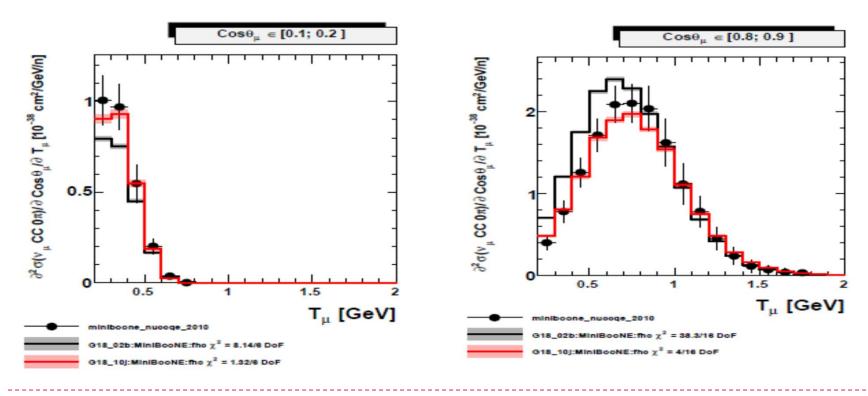

GiBUU from Tina Leitner, NUINT08

GENIE validation plot 2014 W² (GeV²)

GENIE advances in (e,e')

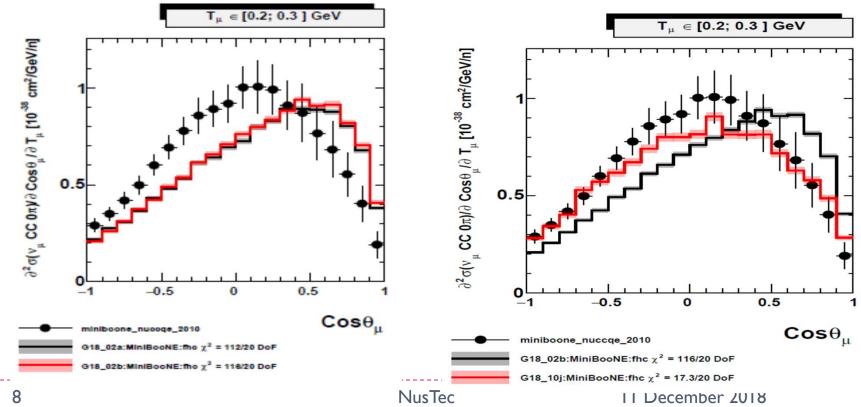
- From Afroditi Papadopoulou NUINT18
- Continued progress associated with e4v collaboration

When we got started Today


V3.0.0

Major release

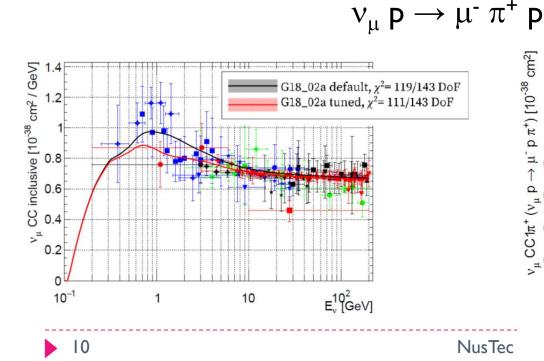
- Make all models equally accessible (no switching of xml files)
- Model sets get designations
 - ▶ G00 00a is old default for historical reference
 - ▶ G18_01a is updated old default (still RS)
 - ▶ G18_02a switches BS+MiniBooNE axial form factors for RES/COH
 - ▶ G18_10i adds LFG & Valencia quasielastic/2p2h & Z expansion GA
 - ▶ G18_01b, G18_02b, and G18_10j switch hN for hA FSI
 - \blacktriangleright hN is new Cascade model with medium corrections for π , N
 - hA is schematic model which is data-based
- ▶ Include new fits to $\nu N \rightarrow \mu \pi N$ (see Julia Tena Vidal talk)
- All plots in this talk from v3.0.0


Modern calculation has better agreement

- G18_10j has full Valencia CCQE QE with RPA/Coulomb, 2p2h with local Fermi gas (LFG) nuclear model
- Compared with G18_02b Lwlyn-Smith, Empirical MEC

More detail for MiniBooNE $CCO\pi$

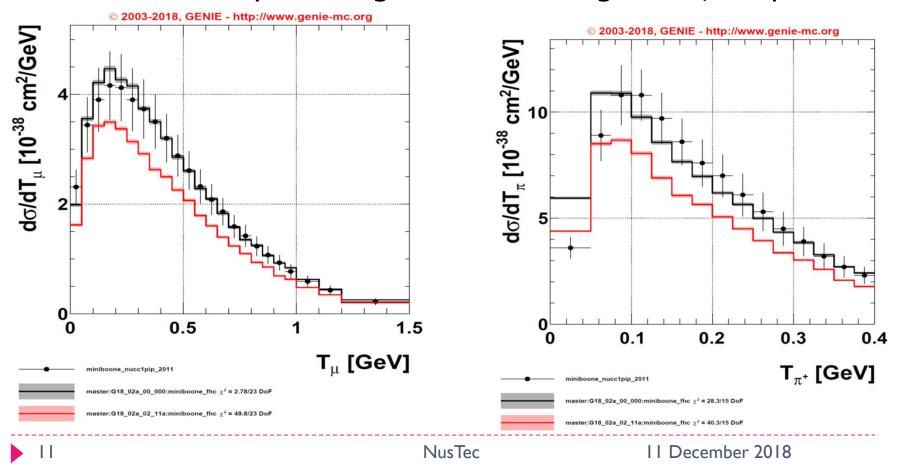
- ▶ Left compare role of FSI (hA2018 vs. hN2018) with LS
 - Angular distribution for low T_{μ} is not right (data or theory?)
- ▶ Right plot shows LS+Empirical MEC vs. Nieves QE+MEC
 - Looks like problem was with theory not designed for low energy

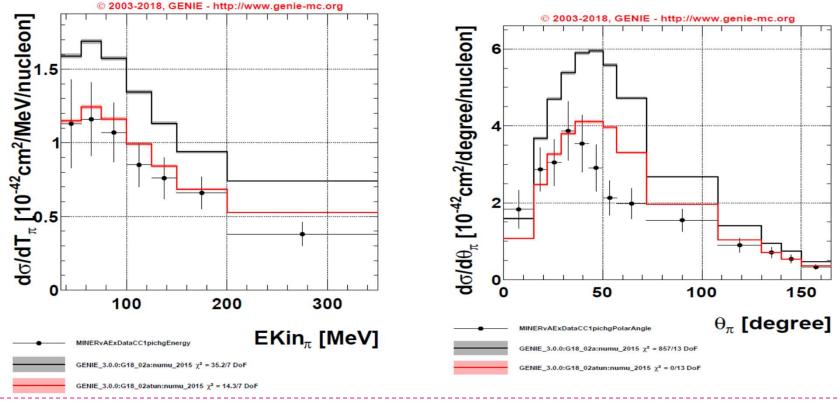

Tuning details - Professor

- Professor is used in many places, e.g. Pythia, for multiparameter tuning (~20 params, improved use of Minuit)
- Uses brute force, build solutions for all variations of selected parameter within given bounds on a finite grid
- Find chisquare minima in each parameter
- Use stored solutions to estimate errors on each parameter
- Can report full correlation matrix
- Fit parameters not connected to reweighting in our version
- Can include priors, nuisance parameters
- Nuisance remains an excellent public option

Fitting results

 Adding exclusive channels greatly improves agreement with them; new tension for inclusive data


 $v_{\mu} n \rightarrow \mu^{-} p$


Results - 02a vs. 02a_tune

- MiniBooNE v_{μ} CC1 π^{+}
- New tune has poorer agreement in magnitude, shape ok

Results - 02a vs. 02a_tune

- MINERVA v_{μ} CC1 π^{\pm}
- New tune produces correct magnitude
- Angle still not easy to match

GENIE status

- ~5 postdocs now in GENIE, 20-50% effort essential
 - With these postdocs and new user groups, improved capabilities
 - Numerous integration tasks, tracking down bugs
 - Comparisons/Fitting software
 - Reweighting
 - Comprehensive FORTRAN interface by Steven Gardiner
 - Common interface for hadronic matrix elements by SG
- FNAL staff provides growing professionalism
 - Sophisticated bug fixing
 - Weekly validation runs posted at public? web site
 - Adding data for comparisons studies
 - Growing number of unit tests

GENIE status - theory

Growing theory interest much appreciated

- Expert help from Luis A-R on resonances
- MAID resonance vector form factors Libo J, Luis A-R
- Coherent rho from Nomad via Libo J
- ▶ DIS model from Sajjad A, Huma H with nuclear corrections
- QE+MEC with spectral function model from Noemi Rocco
- Ab initiio QE model from Saori P, Allesandro Lovato
- Radiative corrections from Doreen W, Stefan P
- DIS model from Walter G
- SUSA QE+MEC from Sara B, Marco M, Stephen D
- Sato-Lee-Nakayama principal amplitudes/cross sections (π N, NN)
- ... others I forget

GENIE-NuWro summit mtg in L'Aquila

GENIE needs

General

- Good way to assess systematic errors for more sophisticated models
- Simple interface for new models
- Continued support for GENIE postdocs
- More direct involvement from experiments
- More and better data from expts fits as good as inputs

QE+MEC

- Good way to integrate ab initio models (QE-like from pion abs?)
- NC 2p2h (MEC) − no theory yet

RES

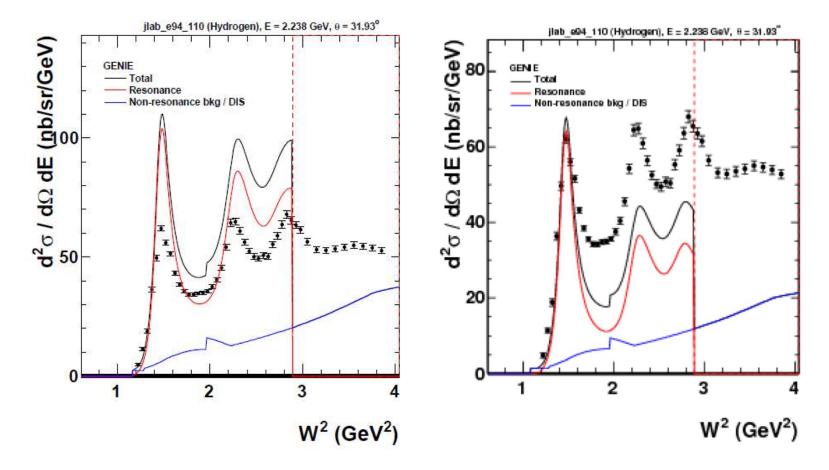
- ▶ Better integration of resonant and nonresonant none now
- ▶ Medium effects on \triangle , NN \rightarrow N \triangle coming from nuclear physics
- Sato-Lee model lots of new models, significant integration issue
- 2p2h (MEC) model

GENIE needs

DIS

- Nuclear corrections very little exists now
- Hadronization simple now, use Jlab, HERA data

FSI


- Effective, cascade model good enough?
- Low energy interactions, pre-equilibrium/compound (γ ,n emission)
- Integrate GiBUU model
- Electron scattering
 - ▶ Continued interaction with e4v collaboration
 - ▶ Rework GENIE to properly use e4v data
- Newer versions of any of the large number of less visible models – charm production, NC processes...
- Something we haven't thought of

conclusions

- GENIE much better off than a few years ago
 - More postdocs, FNAL group, more theory involvement
 - New models will be introduced
 - Significant tuning underway v4 will have nuclear tunes
- Level of involvement from experiments still an issue
 - ▶ e4v has committed 2 young people to GENIE
- Addition of NuWro good for everyone
- With argon experiments, needs have grown again
- Community will decide what future is

New comparisons (ep->e'X) p, d targets

▶ Original on left, maid FF on right – high Q^2 at Δ peak

Model sets

- Historical default (not supported)
 - ▶ G00_00a with hA, no MEC, G00_00b with empirical MEC
 - ▶ RFG, Llewyllen-Smith, Rein-Sehgal (not original)
- Improved historical default
 - ▶ **G18_01a/b** with hA2018/hN2018. better basic (e.g. coherent)
 - ▶ RFG, Llewyllen-Smith, Rein-Sehgal (not original), empirical MEC
- Improved pion production
 - **G18_02a/b** with hA2018/hN2018
 - Includes Berger-Sehgal resonance and coherent, updated axial FF
- Improved quasielastic/ nuclear model/ axial FF
 - All have Local Fermi Gas, Nieves QE, Valencia MEC
 - ▶ G18_10a/b has dipole FF, G18_10i/j has z-expansion FF

20 GENIE v3.0.0 I November 2018

Summary of models

- ▶ Total of 10 model sets *per deuterium tune*
- Each callable via 1 new switch --tune G18 10a 00 000
- year model set param set tune
- Splines must be compatible with chosen data set
- Low energy experiments (dominated by QE) should choose G18_10x for optimal physics
 - Valencia QE has very good description of MiniBooNE QE
- Higher energy experiments (dominated by pion production) should choose G18_02x or G18_10x
 - Rein-Sehgal/Berger-Sehgal have updated resonance parameters
 - Berger-Sehgal coherent has improved pion scattering model

2I GENIE v3.0.0 I November 2018

Summary of form factors

- Vector resonance form factors will be state of the art
 - Delta response at low Q2 was too large
- Need improved nonresonance response (at least vector)
- Need to refit axial form factors

Upgrades to GENIE in progress/anticipated Other than form factors

- New formalism beyond Rein-Sehgal, Berger-Sehgal?
- New ν N $\rightarrow \mu \pi$ N?
 - Nakamura, Sato, Lee... work has started
 - Lattice calculation?
- Medium corrections? (GIBUU had them, then taken out)
- MEC/2p2h for resonances
- FSI to properly match nucleon response

significant work remaining, varied needs

- Theory
 - Much remains to be done that we understand
 - Subjects for the future are also evident
- Generators are catching up to theory, still much to do
 - They reflect existing theory/data in simplified form
 - Existing (e,e') data at high W resonances only for nucleon targets
 - Vector response still not right
 - Existing vA data emphasizes ∆ in light targets
- More eA data JLab experiment recently approved
 - New neutrino-electron collaboration (e4√)
- More vA data − Minerva ME beam with C, Fe, Pb
- ▶ More vN data ?