NuSTEC Workshop on Neutrino Shallow- and Deep-Inelastic scattering (S&DIS) interactions

Teppei Katori Queen Mary University of London NuSTEC board meeting, Fermilab, Dec. 10, 2018

Subscribe "NuSTEC News" E-mail to <u>listserv@fnal.gov</u>, Leave the subject line blank, Type "subscribe nustec-news firstname lastname" (or just send e-mail to me, <u>katori@FNAL.GOV</u>) like "@nuxsec" on Facebook page, use hashtag #nuxsec

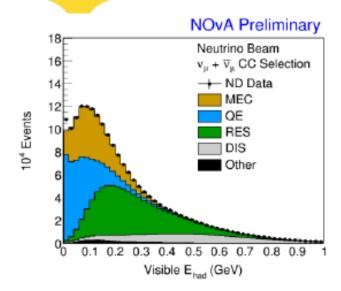
Why a workshop on the SIS/DIS region?

- By far the majority of contemporary studies in ν-nucleus interactions have been of QE and Δ production that is W ≤ 1.4 GeV
- Why study Deep-Inelastic Scattering??
- Better understand the quark / parton structure of the free and bound nucleon.
- Test the predictions of (nuclear) Quantum Chromodynamics (QCD).
- Since over 50% of the DUNE events have W greater than the Delta mass (W ≈≥ 1.4 GeV), we need to consider what we do(little)/do-not(big) know about this region!

J. Morfin @ NuFACT2018

Christophe Bronner, NuInt18

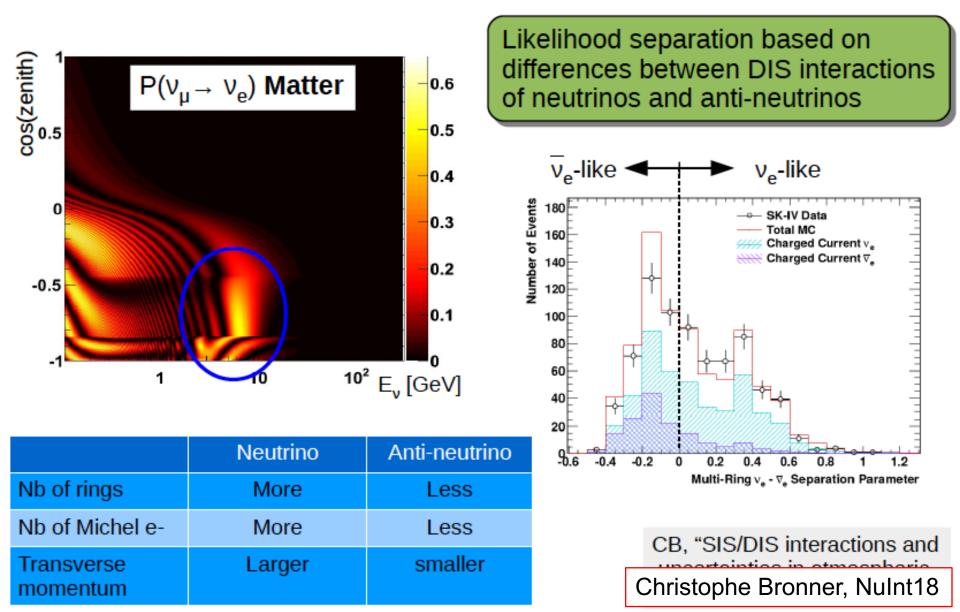
Why a workshop on the SIS/DIS region?


GENIE Tuning

From NOvA ND data:

 10% increase in non-resonant inelastic scattering (DIS) at high W.

M. Muether "Deep Inelastic Scattering Impact on NOvA"


FHC Tune

- Good agreement between MC and data in general.
- DIS has significant impact at high visible E_{had}.
- W distributions do not include the high-W DIS correction.
- Most DIS is in the "transition" regions.

Christophe Bronner, NuInt18

Why a workshop on the SIS/DIS region?

2. Workshop overview

Gran Sasso Science Institute

- Oct. 11-13, 2018
- https://indico.cern.ch/event/727283/

34 participants

- 15 theorists
- 19 experimentalists

9am - 6pm every day

- 7.8-hour theory talks
- 6.5-hour experiment talks
- 8.5-hour discussion & coffee time

University of London

2. Topics

Total 7 sessions

- 1. General introduction and considerations from non-neutrino communities.
- 2. Overview of generator treatments of the SIS and DIS region.
- 3. Sensitivity of oscillation parameters to the SIS and DIS region.
- 4. Resonances and non-resonant contribution with W>Delta: Theory and Experiment.
- 5. The transition from SIS to DIS: Theory and Experiment.
- 6. Current status of nuclear QCD and nuclear PDFs: Theory and Experiment.
- 7. Hadronization in the nuclear environment: Theory and Experiment.

2.1 General introduction and considerations from non-neutrino communities

Thia Keppel (JLab) gave an overview talk of JLab programs which cover all topics of this workshop!

Electron Scattering Measurements Applied to Neutrino Interactions on Nuclei

- · Precision measurements of vector components of cross sections
 - Nucleons and nuclei, A-dependence
 - Form factors
 - -Resonances
 - Deep Inelastic Scattering
 - Quark-hadron duality studies
- Parity violating electron scattering – As above!
- Precision decomposition of nuclear effects within nuclei
 - Smearing/momentum distributions
 - Including short range correlations
 - Additional two body effects (meson exchange currents)

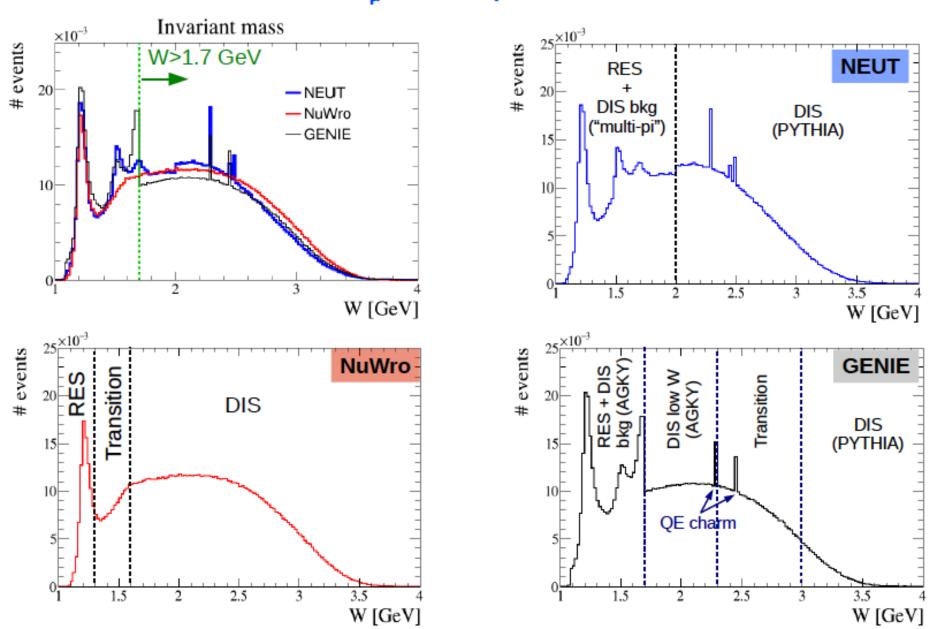
- -EMC effect
- Shadowing and anti-shadowing
- Nuclear interactions
 - Hadronization
 - Final state interactions



2.2 Overview of generator treatments of the SIS and DIS region

- Rein-Sehgal model by Steve Dytman (Pittsburgh)
- Bodek-Yang model by Un-ki Yang (Seoul Nat.I U)
- 4 talks to cover all generators (GENIE, NEUT, NuWro, GiBUU)
- Generator comparisons by Christophe Bronner (ICRR)

Christophe Bronner


2018/12/10

SIS/DIS region in the generators

1.3 GeV/c ²		2 G	2 GeV/c ²				W
	Resonances (1π, 1Κ, 1η) + DIS background ("Multi-pi" mode)		PYTHIA 5.72 ("DIS" mode)			- —	NEUT
GENIE	GENIE 1.7 GeV/c ²		2.3 GeV/c ² 3 GeV/c ²			V/c ²	W
Resonances + DIS lo DIS background ("AGKY nodel")			Linear tra to PYTHI/		PYTHI	A 6	
1.3 GeV/c ² 1.6 GeV/c ²							
RES	Linear transition	n (uses PYTHIA 6					NuWro

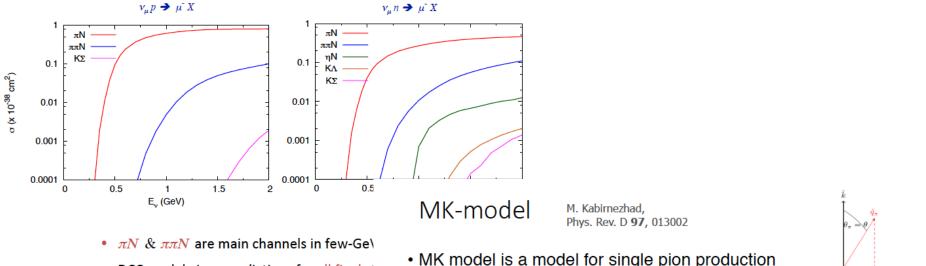
CB, "Generator comparisons SIS/DIS region"

Invariant mass distribution v_u on Fe, E_v =6.0 GeV

2.3 Sensitivity of oscillation parameters to the SIS and DIS region

Area-normalized MC

Data


- NOvA by Matt Muether (Wichita State)
- T2K/SuperK by Christophe Bronner (ICRR)

Binning for Sensitivity: *v_u* Events ek-Yang corrections Quantile 1 Quantile 4 tematic uncertainties Best Resolution ~6% Worst Resolution ~12% NOvA Pre NOvA Prelimina NOvA Prelimin NOvA Prelimins pproaches to do systematic uncertainties on Data/MC Data/MC Data/MC Data/MC +2.8%-0.7% -1.4% +1.6% meters ructed Neutrino Energy (GeV) Reconstructed Neutrino Energy (GeV) Reconstructed Neutrino Energy (GeV) Reconstructed Neutrino Energy (GeV) Data/MC Data/MC Data/MC Data/MC \overline{v}_u nd DIS +7.9% +2.5% -5.3% -11.6% ing the BY "Cv1d, Cv2d and Cs have very small effect on the χ^2 and hence have been neglected" D. Bhattacharya PhD's thesis ³⁸cm²] to be like Data-MC shape agreement good within each quantile. °6 0.5[‡] Extrapolate each separately. b 0.4 arameters neter in WICHITA STATE 0.3F on the 11 UNIVERSITY reduced x² or the fit to the charged-lepton 0.2 Cv1d=0.202 (nominal) data" Cv1d=0.302 0.1 But: Queen Mary - no correlations of the errors between 10^{-1} 10^{2} 10 E, [GeV] parameters no error on some of the parameters University of London

2.4 Resonances and non-resonant contribution with W>∆:Theory & Experiment

- DCC model by Satoshi Nakamura (Osaka→IHEP China)
- MK model by Minoo Kabirnezhad (Oxford)
- high-W study by Steve Dytman (Pittsburgh)

- DCC model gives predictions for all final st
- ηN , KY cross sections are $10^{-1} 10^{-2}$ sm:

Jeen Mary

University of London

 Uses Rein-Sehgal model to describe resonant interaction (17 resonances) up to W=2 GeV.

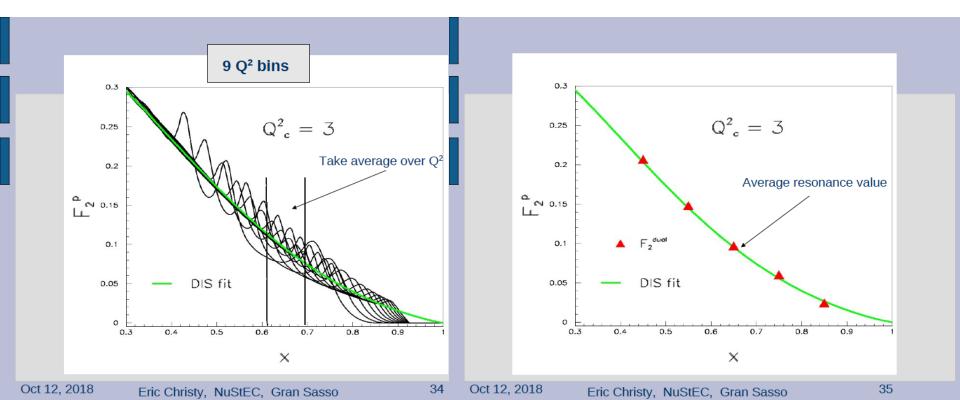
i.e. resonant and non-resonant interactions including

· Lepton mass is included.

the interference effects.

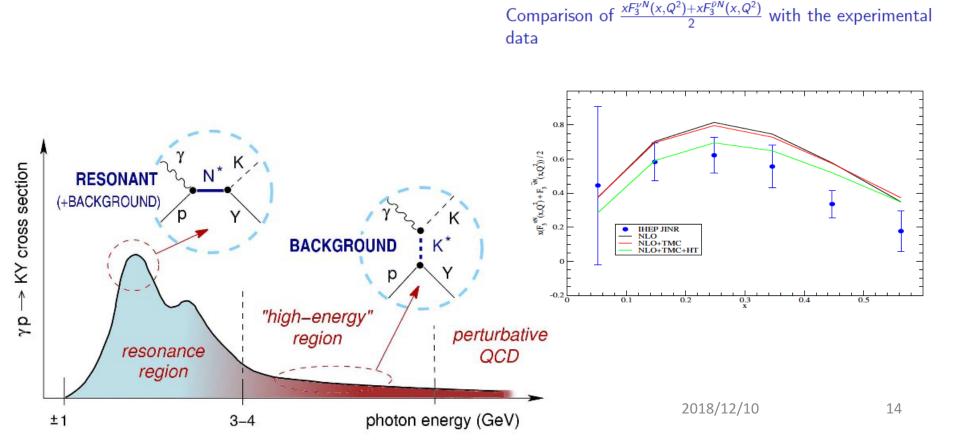
 non-resonant background is defined by a set of diagrams determined by HNV model.
 E. Hernandez, J. Nieves and M. Valverde, Phys. Rev. D 76 (2007) 033005

> **Output of the MK-model** $d \sigma/dW dQ^2 d\Omega_{\pi}$


 $(\hat{k}_1 \times \hat{k}_2) \times \hat{k}$

 $\phi_{\pi} = \phi^{*}$

2.5 The transition from SIS to DIS: Theory and Experiment


- Duality in (e,e') by Eric Christy (JLab)
- Duality in v-A (Dortmund)
- Higher-twist and duality by Huma Haider (AMU)
- Regge theory in transition region by Natalie Jachowicz (Ghent)

"An average over the resonances is intimately related to the scaling curve, (not the diffractive or the coherent scattering)"

2.5 The transition from SIS to DIS: Theory and Experiment

- Dualtiy in (e,e') by Eric Christy (JLab)
- Duality in v-A (Dortmund)
- Higher-twist and duality by Huma Haider (AMU)
- Regge theory in transition region by Natalie Jachowicz (Ghent)

2.6 Current status of nuclear QCD and nuclear PDFs: Theory and Experiment

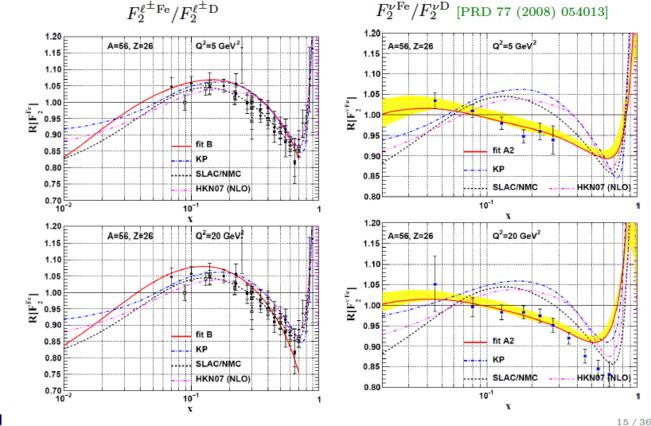
- Nuclear medium effect 1 by Sajjad Athar (AMU)
- Nuclear medium effect 2 by Sergey Kulagin (JINR)
- Nuclear-dependent PDF by Olek Kusina (IFJ PAN, Poland)

Why nuclear corrections survive at DIS?

Space-time scales in DIS

$$W_{\mu\nu} = \int d^4 x \exp(iq \cdot x) \langle p | [J_{\mu}(x), J_{\nu}(0)] | p \rangle$$
$$q \cdot x = q_0 t - |q|z = q_0 t - \sqrt{q_0^2 + Q^2} z \simeq q_0 (t - z) - \frac{Q^2}{2q_0} z$$

- DIS proceeds near the light cone: $|t z| \sim 1/q_0$ and $t^2 z^2 \sim Q^{-2}$.
- ▶ In the TARGET REST frame the characteristic time and longitudinal distance are NOT small at all: $t \sim z \sim 2q_0/Q^2 = 1/Mx_{\rm Bj}$. DIS proceeds at the distance ~ 1 Fm at $x_{\rm Bj} \sim 0.2$ and at the distance ~ 20 Fm at $x_{\rm Bj} \sim 0.01$.
- Two different regions in nuclei from comparison of coherence length (loffe time) $L = 1/Mx_{Bj}$ with average distance between bound nucleons r_{NN} :
 - $L < r_{NN}$ (or x > 0.2) \Rightarrow Nuclear DIS \approx incoherent sum of contributions from bound nucleons. Nuclear corrections $\sim EL$ and $\sim |p|^2 L^2$ where E(p)typical energy (momentum) in the nuclear ground state.
 - L ≫ r_{NN} (or x ≪ 0.2) ⇒ Coherent effects of interactions with a few nucleons are important.



Kulagin (INR)

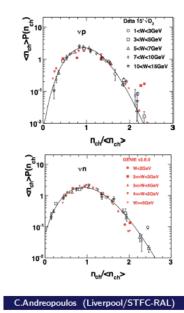
2.6 Current status of nuclear QCD and nuclear PDFs: Theory and Experiment

- Nuclear medium effect 1 by Sajjad Athar (AMU)
- Nuclear medium effect 2 by Sergey Kulagin (JINR)
- Nuclear-dependent PDF by Olek Kusina (IFJ PAN, Poland)

nPDFs from charged-lepton DIS data [PRD 80 (2009) 094004]

2.7 Hadronization in the nuclear environment: Theory and Experiment

- PYTHIA by Stefan Prestel (Lund)
- AGKY model by Costas Andreopoulos (Liverpool)
- FLUKA by Sara Paola (CERN)


University of Lonuon

- GiBUU by Kai Gallmeister (Frankfurt)
- SIS systematic errors by TK (Queen Mary)

Empirical low-W model: KNO scaling

KNO scaling: $\langle n \rangle P(n) = f(n/\langle n \rangle)$ is independent of W [Z.Koba, H.B.Nielsen, P.Olesen, Nucl.Phys.B40,317(1972)]

GENIE

The function f(z = n / < n >) is parameterized using the Levy function with parameter c:

$$L(z;c) = \frac{2e^{-c}c^{cz+1}}{\Gamma(cz+1)}$$

The following parameters c were determined by a GENIE fit to data:

	νρ	νn	νp	νn
С	7.93	5.22	as in $ u n$	as in νp

October 13, 2018

21 / 48

Subscribe NuSTEC News mailing list! Facebook:@nuxsec, Twitter:#nuxsec

2.7 Hadronization in the nuclear environment: Theory and Experiment

Туре	type of error	approach	ongoing issue	size of error
resonance	Single pion production	Form factors, external data on e and nu	MiniBooNE-MINERvA data tension	large, but studied well
SIS	Non-resonant background	External data on e and nu	Not many studies. Very phenomenological	???
SIS	Bodek-Yang correction	Change Bodek-Yang parameters by eyes	There is are correlations on model parameters	maybe large?
SIS	Higher resonance	???	MC must be wrong	???
DIS	differential xs	NuTeV-GENIE comparison (bottom-up)	Disagreement seen only at very low x (<0.03)	1-2% by GENIE
DIS	A-scaling, empirical	MINERvA-GENIE (bottom-up)	No understanding MINERvA data	maybe large?
DIS	A-scaling, nuclear PDF	From nuclear PDF, CT10? nCTEQ? (top-down)	GRV98 is only compatible with B-Y correction	expected to be small
Hadronization	low W averaged charged hadron multiplicity	Change AGKY model parameters	Not many data.	maybe large?
Hadronization high W averaged charged hadron multiplicity		bubble chamber-PYTHIA comparison	Lund string function need to be tune for lowE	1-2% by GENIE

Some of systematic errors are identified to be dangerous...,

- What kind of systematic errors do we have on nuSIS&DIS?