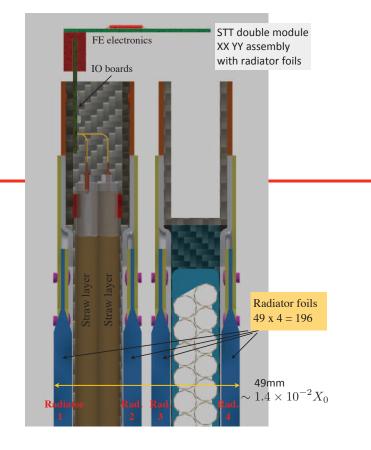
A Proposal for Precision Measurements of $\nu(\bar{\nu})$ -H Interactions

R. Petti

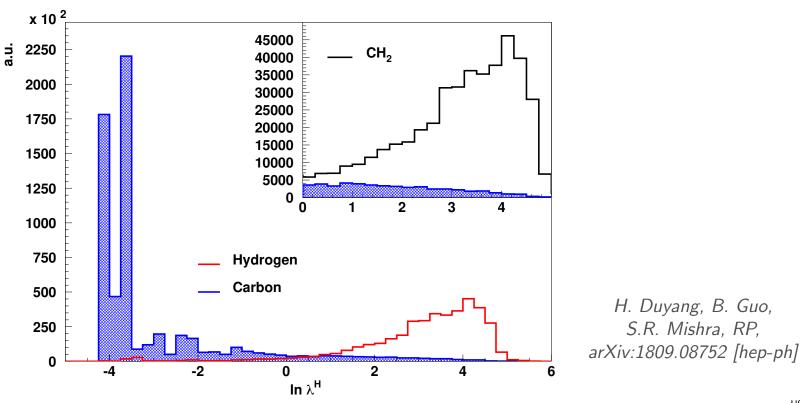
University of South Carolina, Columbia SC, USA


NuSTEC board meeting Fermilab, December 10, 2018

Roberto Petti

A DETECTOR TO CONTROL NEUTRINO TARGETS

• Compact version of Straw Tube Tracker (STT) from DUNE CDR:


- Accurate control of various nuclear target(s) by separating target(s) from active tracker;
- Thin targets spread out uniformly within tracker by keeping low density $| \rho \sim 0.16 \text{ g/cm}^3 |$;
- Total volume ~ 49 m³, fiducial mass 5 tons, $X_0 \sim 3.5$ m, sampling 0.15 (0.36)% $X_0 \perp (\parallel)$.
- \implies Need $B \sim 0.6 T$ and to be surrounded by 4π electromagnetic calorimeter

- Radiator targets (100% purity) account for > 95% of STT mass and can be tuned to achieve desired statistics & resolutions.
- Separation from excellent vertex, angular & timing resolutions.
- Radiators can be replaced by thin nuclear targets: C, Ca, Ar, Fe, etc.

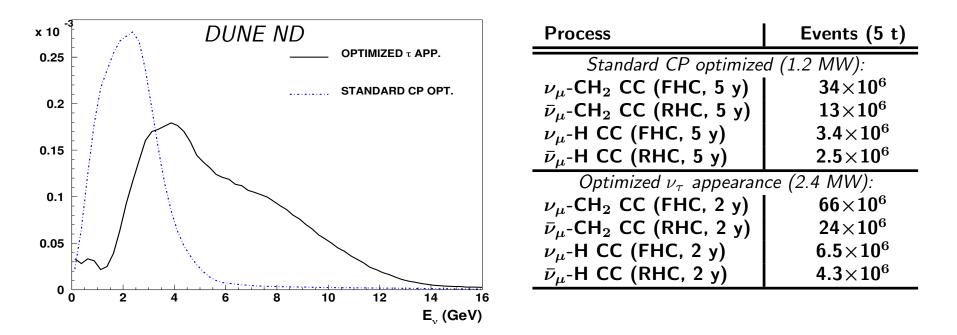
• Novel technique to measure $\nu(\bar{\nu})$ -Hydrogen by subtracting CH₂ and C targets:

- 714 kg of H fiducial mass provides $3.4(2.5) \times 10^6 \nu_{\mu}(\bar{\nu}_{\mu})$ CC on H in 5 years;
- *Kinematic selection results in clean H samples of inclusive & exclusive CC topologies with 80-92% purity and >90% efficiency before subtraction;*
- Model-independent data subtraction of (small) residual C bkgnd with dedicated graphite target.
- \implies Viable and realistic alternative to liquid H₂ detectors

Roberto Petti

ADDITION TO DUNE ND COMPLEX

- Compact STT flexible and can be adapted to different detector geometries.
- ◆ Large statistics $\nu(\bar{\nu})$ -H samples are necessary to reduce Ar systematics in DUNE ⇒ Proposal to enhance DUNE ND complex by integrating compact STT
 - Option I :

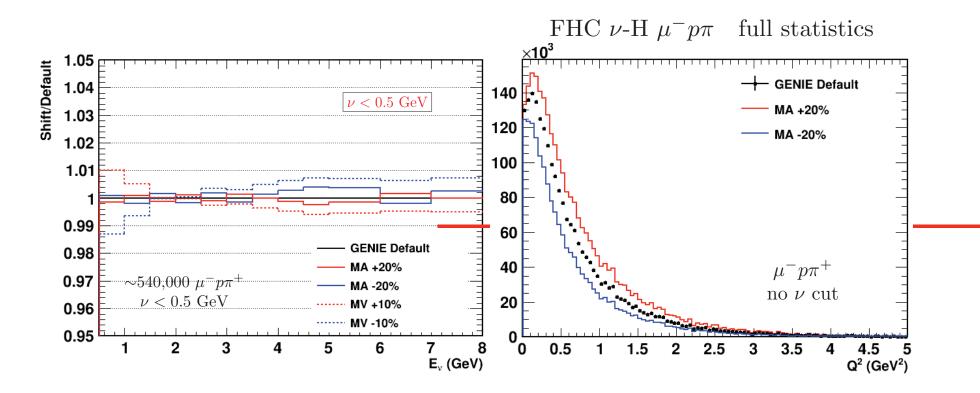

Additional self-contained detector including compact STT, magnet, & ECAL

- Use extra space available in ND hall either off-axis or on-axis once DUNEprism off-axis;
- Low-cost solution being studied by re-using KLOE magnet & ECAL with compact STT.
- Option II :

High pressure Ar gas TPC & compact STT within the same magnetic volume.

H. Duyang, B. Guo, S.R. Mishra, RP, DUNE docdb # 11101, 8031

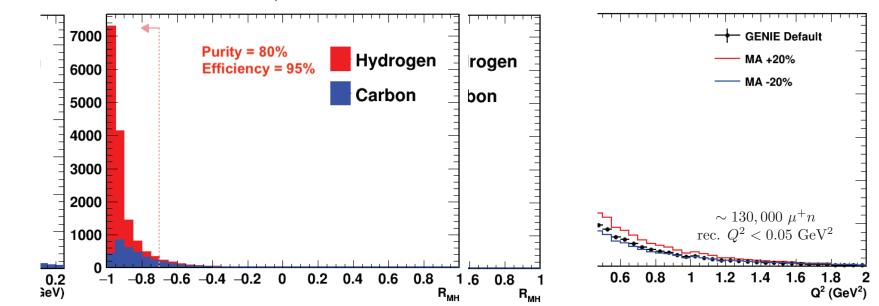
LBNF BEAMS & EXPECTED STATISTICS


- Available LBNF beam optimized for FD ν_τ appearance (120 GeV):
 Conceivable dedicated run after 5y FHC + 5y RHC with the "standard" beams optimized for CP
 - LBNF & DUNE (202x): 120 GeV p, 1.2 MW, 1.47×10²¹ pot/y, ND at 574m;
 - LBNF upgrade: 120 GeV p, 2.4 MW |, $\sim 3 \times 10^{21}$ pot/y.
- + Assume a modest 2y run with $u_{ au}$ optimized beam and upgraded intensity.

 \implies Compact STT provides desired statistics $\sim 10^8$ & high resolution $\Delta E_{\mu} < 0.2\%$

PRECISION FLUX MEASUREMENTS

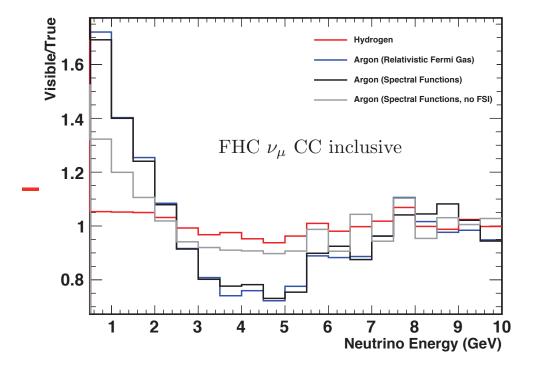
• Relative ν_{μ} & $\bar{\nu}_{\mu}$ fluxes vs. E_{ν} with exclusive topology on Hydrogen $\nu(\bar{\nu})p \rightarrow \mu^{\mp}p\pi^{\pm}$:


- Cut $|\nu < 0.5 \text{ GeV}|$ flattens cross-sections reducing uncertainties on E_{ν} dependence;
- Flux uncertainties dominated by muon energy scale ($\Delta E_{\mu} \sim 0.2\%$ in low density tracker);
- Direct determination of H form factors from measured Q^2 distribution without ν cut (25% overlap).
- \implies Potentially achieve unprecedented precision on fluxes $\sim 1\%$

• Relative $\bar{\nu}_{\mu}$ fluxes using QE on Hydrogen $\bar{\nu}p \rightarrow \mu^{+}n$ with $\nu < 0.5$ GeV (or lower).

◆ Absolute & relative ν
_µ fluxes from QE on Hydrogen ν
_p → μ⁺n with Q² ~ 0:
$$\frac{d\sigma}{dQ^2} |_{Q^2=0} = \frac{G_F^2 \cos^2 \theta_c}{2\pi} [F_1^2(0) + G_A^2(0)]$$

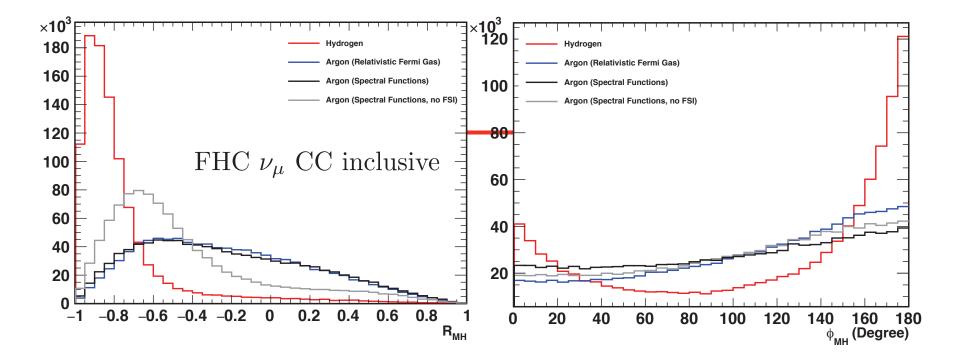
- Cross-section independent of neutrino energy for $\sqrt{2E_{\nu}M} > m_l$;
- At $Q^2 = 0$ QE cross-section determined by neutron β -decay to a precision $\ll 1\%$;
- Neutron interactions in STT & ECAL allow reconstruction of lower Q^2 than protons.



RHC v_µp→µ⁺n

Roberto Petti

NUCLEAR SMEARING & ENERGY SCALE


- For most $\nu(\bar{\nu})$ -H topologies (e.g. $\mu p\pi$) response function defined by $\delta p/p$ resolution \implies Unfolding of detector response can be calibrated accurately in low-density STT
- Compare inclusive CC distributions of variable X from $\nu(\bar{\nu})$ -H and Ar \implies Determine product of nuclear smearing times σ for the particular ND spectrum
- + H allows model-independent measurement of initial and final state nuclear effects

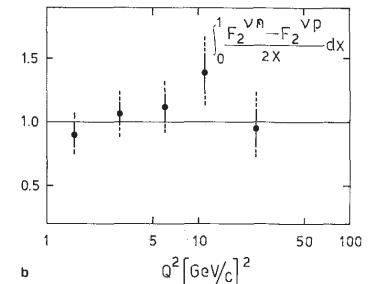
Substantial nuclear smearing rapidly varying in oscillation range!

Additional handles to resolve potential degeneracies in the nuclear smearing:

- Comparisons of H and Ar interactions in bins of muon variables (p_{μ}, θ_{μ}) ;
- Comparisons of H and Ar interactions in bins of the radial distance from the beam axis & different ND locations provide a variation of the input spectra;
- Exclusive topologies ($\mu p\pi$, μn , etc.) in both H and Ar & complete set of kinematic variables;
- Simultaneous analysis of ν AND $\bar{\nu}$ to gather information about ν -n (isospin symmetry);
- Selection of Ar events with a total charge at the primary vertex $C_{\text{vtx}} = 0$ for neutrinos and $C_{\text{vtx}} = +1$ for antineutrinos to check the impact of n and p interactions.

GENERAL PURPOSE PHYSICS FACILITY

- Addition of "compact STT" can address the main issues of neutrino experiments (statistics, control of targets & fluxes) filling precision gap with electron experiments.
 - ⇒ Exploit the unique properties of the (anti)neutrino probe to study fundamental interactions & structure of nucleons and nuclei
- ◆ Turn the DUNE ND site into a general purpose v&v physics facility with broad program complementary to ongoing fixed-target, collider and nuclear physics efforts:
 - Measurement of $\sin^2 \theta_W$ and electroweak physics;
 - Precision tests of isospin physics & sum rules (Adler, Gross-Llewellyn Smith);
 - Measurements of strangeness content of the nucleon $(s(x), \bar{s}(x), \Delta s, \text{ etc.})$;
 - Studies of perturbative and non-perturbative QCD and structure of nucleons and nuclei;
 - Precision tests of the structure of the weak current: PCAC, CVC;
 - Measurement of nuclear physics and (anti)-neutrino-nucleus interactions (Fe, Ar, Ca, C, etc.);
 - Precision measurements of cross-sections and particle production; etc.
 - Searches for New Physics (BSM): sterile ν, MiniBooNE anomaly, ν_τ search, axion-like particles, dark photons, sub-GeV dark matter, etc.


⇒ Significant discovery potential & hundreds of diverse physics topics!

ADLER SUM RULE & ISOSPIN PHYSICS

The Adler integral provides the ISOSPIN of the target and is derived from current algebra:
S_A(Q²) = ∫₀¹ dx/2x (F₂^{νp} - F₂^{νp}) = I_p
At large Q² (quarks) sensitive to (s - s̄) asymmetry, isospin violations, heavy quark production
Generalize the integral to nuclear targets and test nuclear effects (S. Kulagin and R.P. PRD 76 (2007) 094023)

 \implies Precision test of S_A at different Q^2 values

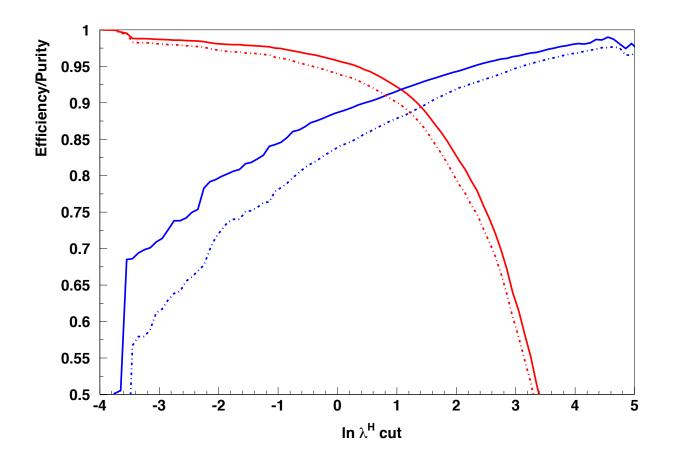
- Only measurement available from BEBC based on 5,000
 νp and 9,000 νp (D. Allasia et al., ZPC 28 (1985) 321)
- ◆ Direct measurement of F₂^{νn}/F₂^{νp} free from nuclear uncertainties and comparisons with e/µ DIS
 ⇒ d/u at large x and verify limit for x → 1

Process	$ u(ar{ u}) ext{-}H$			
Standard CP optimized:				
$ u_{\mu}$ CC (5 y)	$3.4 imes 10^{6}$			
$ar{ u}_{\mu}$ CC (5 y)	2.5×10^{6}			
Optimized $ u_{ au}$ appearance:				
$ u_{\mu}$ CC (2 y)	$6.5 imes 10^{6}$			
$ u_{\mu}$ CC (2 y)	4.3×10 ⁶			

NUCLEAR MODIFICATIONS OF NUCLEON PROPERTIES

• Availability of ν -H & $\overline{\nu}$ -H allows direct measurement of nuclear modifications of $F_{2,3}$:

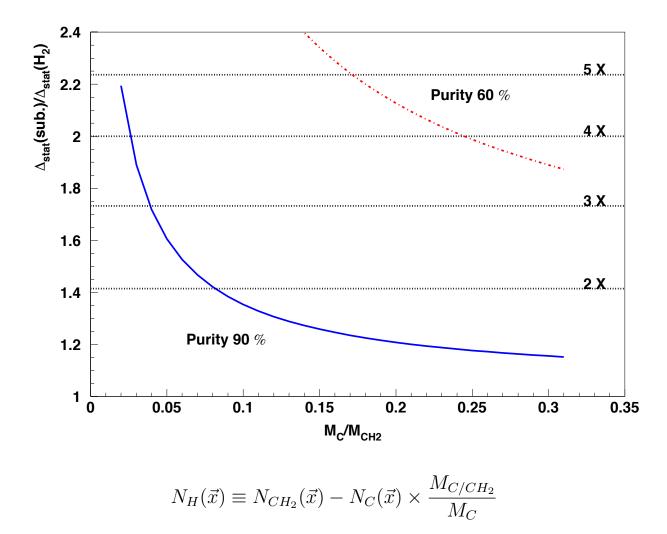
$$R_A \stackrel{\text{def}}{\equiv} \frac{2F_{2,3}^{\nu A}}{F_{2,3}^{\bar{\nu}p} + F_{2,3}^{\nu p}}(x, Q^2) = \frac{F_{2,3}^{\nu A}}{F_{2,3}^{\nu N}}$$


- Comparison with e/μ DIS results and nuclear models;
- Study flavor dependence of nuclear modifications using $\nu \& \bar{\nu}$;
- Effect of the axial-vector current.
- \bullet Study nuclear modifications to parton distributions in a wide range of Q^2 and x.
- ◆ Study non-perturbative contributions from High Twists, PCAC, etc. and quark-hadron duality in different structure functions $F_2, xF_3, R = F_L/F_T$.
- Nuclear modifications of nucleon form factors e.g. using NC elastic, CC quasi-elastic and resonance production.
- Coherent meson production off nuclei in CC & NC and diffractive physics.

SUMMARY

- To overcome limitations from Ar target in DUNE necessary to have a hydrogen target, which offers unique handle on 3 important systematics for LBL analyses:
 - Determination of the neutrino and antineutrino fluxes as a function of E_{ν} ;
 - Constraint of the response function associated to the nuclear smearing (unfolding);
 - Calibration of the reconstructed neutrino energy scale.
- All v(v̄)-H CC topologies can be selected in a compact STT with high efficiency & purity via a data-driven background subtraction with high statistics
 ⇒ Various options to implement within ND complex with minimal design changes
- Addition of compact STT addresses the limitations of current ND design, providing the required redundancy and direct in-situ constraints of relevant systematics
- Compact STT additionally offers a rich physics program, with hundreds of diverse topics, complementary to ongoing fixed-target, collider and nuclear physics efforts.

We welcome, and need, your support to help build the DUNE ND to precisely measure processes that would ultimately allow DISCOVERIES at Fermilab


Backup slides

Event-by-event probability of H or C interaction Vary efficiency/purity and define control samples to validate selection

	R_{mH} and p	$p_{T\perp}^H \text{ cuts}$	$\ln \lambda^H \mathrm{cut}$		
Process	Efficiency Purity		Efficiency	Purity	
$\nu_{\mu}p \to \mu^- p \pi^+$	93%	86%	90%	92%	
$\bar{\nu}_{\mu}p \to \mu^+ p \pi^-$	89%	84%	90%	88%	
$\bar{\nu}_{\mu}p \to \mu^+ n$	95%	80%			
$\nu_{\mu}p$ CC inclusive	83%	73%			

TABLE I. Efficiency and purity for the kinematic selection of H interactions from the CH₂ plastic target using simple cuts on R_{mH} and $p_{T\perp}^H$ (described in the text), as well as on the multi-variate likelihood ratio $\ln \lambda^H$. The cuts on $\ln \lambda^H$ are chosen to retain a fixed 90% signal efficiency.

Data-driven subtraction of small backgrounds (model-independent)

Process	CH_2 target	H target	CH_2 selected	C bkgnd
$\nu_{\mu} \text{ CC } \mu^{-} p \pi^{+}$	3,924,000	2,484,000	2,430,000	194,000
ν_{μ} CC inclusive	$34,\!900,\!000$	$3,\!591,\!000$	$4,\!140,\!000$	1,160,000
$\bar{\nu}_{\mu} \ \mathrm{CC} \ \mu^+ p \pi^-$	836,000	373,000	$365,\!000$	29,100
$\bar{\nu}_{\mu} \ \mathrm{CC} \ \mu^+ n$	4,960.000	$1,\!240,\!000$	360,000	70,000
			$648,\!000$	126,000
$\bar{\nu}_{\mu}$ CC inclusive	$13,\!000,\!000$	2,882,000		

TABLE II. Number of events expected in the selection of various processes on H with (anti)neutrino beams similar to the ones available in DUNE [1, 2], assuming 5+5 years of data taking with the neutrino and antineutrino beam polarities. The first two columns (CH₂ and H targets) refer to the initial statistics, while the last two include all selection cuts described in this paper. For the CH₂ and C targets the numbers refer to the given final state topologies originated from either por n interactions. For the $\mu^+ n$ topologies the first line refers to the events with n identified in the tracker (25%) and the second to the ones with n identified in ECAL (45%). See the text for details.

	NuWro		GiBUU		GENIE	
Process	Efficiency	Purity	Efficiency	Purity	Efficiency	Purity
$\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$	93%	86%	93%	84%	93%	91%
$\bar{\nu}_{\mu}p \to \mu^+ p \pi^-$	89%	84%	89%	87%	89%	89%

TABLE III. Comparison of the efficiency and purity for the kinematic selection of H interactions from the CH₂ plastic target using simple cuts on R_{mH} and $p_{T\perp}^H$ with the NuWro [21], GiBUU [22], and GENIE [23] event generators. The same selection cuts as in Tab. I are used in all cases.

Check of model dependence in the H selection

OPTION II: H₂ GAS TARGET

- + Assume liquid H_2 bubble chamber with volume > 10 m³ not feasible (safety).
- Default high pressure TPC with $\sim 106 \text{ m}^3$ total volume at 10 atm
- ◆ Using nominal HPgTPC event rates with Ar gas estimate achievable ν(ν)-H rates:
 <u>Statistics reduction for Ar</u>: t_{Ar}/t_{Ar+H2} = factor 2
 <u>Statistics reduction for H</u>: ρ_{H2}/ρ_{Ar} × σ_p/σ_{p+n} × t_{H2}/t_{Ar+H2} = factor 60

HPgTPC:				
Process FHC (5y) RHC (5y)				
ν_{μ} CC on H	136,000	9,680		
$\bar{ u}_{\mu}$ CC on H	5,642	98,750		

OPTION III: SCINTILLATOR

• Consider interactions on the H content in plastic CH scintillator ($\sim 7\%$ by weight) \implies Factor of 2 lower H content than pure polypropylene CH₂

+ Angular, vertex, and momentum resolutions cannot provide accurate C subtraction:

- Lower purities achievable from larger reconstruction smearing of transverse plane kinematics;
- Vertex location and lower efficiency in associating interactions to each material.
- ⇒ Larger systematic uncertainties from the subtraction procedure
- Small impurities from glue, fibers, coatings, etc. make subtraction of nuclear components difficult in relation to small H content of about 7%.