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MiniBooNE Detector 
10 

Aguilar-Arevalo et al., NIM A599, 28 (2009) 
(inside view of MiniBooNE tank) 

•  800 tons of mineral oil  
•  ν interactions on CH2 

•  Cerenkov detector → ring imaging for event reconstruction and PID v 

 Neutrino-oscillation and 0νββ experiments

• Accurately measure neutrino-oscillation 
parameters

• Determine whether the neutrino is a Majorana 
or a Dirac particle

• Need for including nuclear dynamics; mean-
field models inadequate to describe neutrino-
nucleus interaction

 Multi-messenger era for nuclear astrophysics 

• Gravitational waves have been detected!

• Supernovae neutrinos will be detected by the 
current and next generation neutrino experiments

• Nuclear dynamics determines the structure and 
the cooling of neutron stars

The Physics case



The basic model
• In the low-energy regime, quark and gluons are confined inside hadrons. Nucleons can treated 
as point-like particles interacting through the Hamiltonian 

H =
X

i

p2
i

2m
+

X

i<j

vij +
X

i<j<k

Vijk + . . .

• Effective field theories are the link between QCD and nuclear observables. They exploit the 
separation between the “hard” (M~nucleon mass) and “soft” (Q ~ exchanged momentum) scalesLattice QCD  

QFT in a Finite and Discretized Spacetime

Lattice Spacing :

1/Λχa << 

m⇡L >> 2⇡
Lattice Volume : 

Extrapolate to a = 0 and L =1

(Nearly Continuum)

(Nearly Infinite Volume)

Systematically remove non-QCD parts of calculation
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Figure 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid
dots, solid squares, and solid diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are
given in the text.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-nucleon forces are created
on an equal footing and emerge in increasing number as we go to higher and higher orders. At NNLO, the
first set of nonvanishing three-nucleon forces (3NF) occur [70, 71], cf. column ‘3N Force’ of Fig. 1. In fact, at
the previous order, NLO, irreducible 3N graphs appear already, however, it has been shown by Weinberg [52]
and others [70, 127, 128] that these diagrams all cancel. Since nonvanishing 3NF contributions happen first
at order (Q/⇤

�

)3, they are very weak as compared to 2NF which start at (Q/⇤
�

)0.
More 2PE is produced at ⌫ = 4, next-to-next-to-next-to-leading order (N3LO), of which we show only

a few symbolic diagrams in Fig. 1. Two-loop 2PE graphs show up for the first time and so does three-pion
exchange (3PE) which necessarily involves two loops. 3PE was found to be negligible at this order [57, 58].
Most importantly, 15 new contact terms ⇠ Q4 arise and are represented by the four-nucleon-leg graph with
a solid diamond. They include a quadratic spin-orbit term and contribute up to D-waves. Mainly due to
the increased number of contact terms, a quantitative description of the two-nucleon interaction up to about
300 MeV lab. energy is possible, at N3LO (for details, see below). Besides further 3NF, four-nucleon forces
(4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF,
4NF are weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known
fact that 2NF � 3NF � 4NF . . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT
development of the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking
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The Argonne v18 is a finite, local, configuration-space potential controlled by ~4300 np and pp 
scattering data below 350 MeV of the Nijmegen database

Nuclear (phenomenological) Hamiltonian
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Three-nucleon interactions effectively include the lowest nucleon excitation, the ∆(1232) resonance, 
end other nuclear effects

⇡

⇡

⇡
⇡

⇡ ⇡

��
⇡

⇡

⇡ ⇡

⇡

⇡ ⇡

⇡

⇡⇡

�

�

�



Nuclear electroweak currents 
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FIG. 4: (Color online) Magnetic moments in nuclear magne-
tons for A ≤ 9 nuclei. Black stars indicate the experimen-
tal values [35–37], while blue dots (red diamonds) represent
GFMC calculations which include the IA one-body EM cur-
rent (total χEFT current up to N3LO). Predictions are for
nuclei with A > 3.

and the NLO OPE term contributes in both the trinu-
cleon clusters and in between the trinucleon clusters and
the valence pp (nn) pair. The IA m.m. for 9Be is close
to the experimental value, while those for 9Li and 9C
are far from the data, so this pattern of small and large
MEC corrections provides good overall agreement with
the data.

The χEFT results reported in Tables III and V are
summarized in Fig. 4, where the experimental data [34–
37] (there are no data for the m.m. of 9B) are repre-
sented by black stars. We show also the experimen-
tal values for the proton and neutron m.m.’s, as well
as their sum, which corresponds to the m.m. of an S-
wave deuteron. The experimental values of the A = 2–3
m.m.’s have been utilized to fix the LECs, therefore pre-
dictions are for A > 3 nuclei. The blue dots labeled
as GFMC(IA) represent theoretical predictions obtained
with the standard IA one-nucleon EM current entering
at LO: diagram (a) of Fig. 1. The GFMC(IA) results
reproduce the bulk properties of the m.m.’s of the light
nuclei considered here. In particular, we can recognize
three classes of nuclei with non-zero m.m.’s, i.e., odd-
even nuclei whose m.m.’s are driven by an unpaired va-
lence proton, even-odd nuclei driven by an unpaired va-
lence neutron, and odd-odd nuclei with either a deuteron
cluster or a triton-neutron (3He-proton) cluster outside
an even-even core. Predictions which include all the con-
tributions to the N3LO χEFT EM currents illustrated
in Fig. 1 are represented by the red diamonds of Fig. 4,
labeled GFMC(TOT). In all cases except 6Li and 9Be
(where the IA is already very good and the MEC correc-
tion is very small) the predicted m.m.’s are closer to the
experimental data when the MEC corrections are added
to the IA one-body EM operator.

It is also interesting to consider the spatial distribution
of the various contributions to the m.m., i.e., to examine
the magnetic density. The one-body IA contributions
from the starting VMC wave functions are shown in Fig. 5
for the isobaric analog pairs 7Li–7Be, 8Li–8B, and 9Li–
9C. (The VMC values for the IA m.m.’s are within a few
% of the final GFMC values, so we expect their spatial
distribution to be reasonably accurate.) In the figure, the
red upward-pointing triangles are the contribution from
the proton spin, µp[ρp↑(r)−ρp↓(r)], and similarly the blue
downward-pointing triangles are the contribution from
the neutron spin. The green diamonds are the proton
orbital (convection current) contribution, and the black
circles are the sum. The integrals of the black curves over
d3r give the total m.m.’s of the nuclei in IA.

For the neutron-rich lithium isotopes, there is one un-
paired proton (embedded in a p-shell triton cluster) with
essentially the same large positive contribution in all
three cases. The proton orbital term is also everywhere
positive, but relatively small. For 7Li and 9Li, the neu-
trons are paired up, and give only a small contribution,
so the total m.m. is close to the sum of the proton spin
and orbital parts. However 8Li has one unpaired neu-
tron which acts against the proton and significantly re-
duces the overall m.m. values. For the proton-rich iso-
baric analogs, there is one unpaired neutron (embedded
in a p-shell 3He cluster) with the same sizable negative
contribution in all three cases. In 7Be and 9C, the pro-
tons are paired up and give little net contribution, but
the orbital term is always positive and acts against the
neutron spin term. In 8B there is also one unpaired pro-
ton, which gives a bigger contribution than the unpaired
neutron and results in a net positive m.m. value.

In Table VI, we explicitly show the various contribu-
tions entering the χEFT operator. The labeling in the
table has been defined in Sec. III A. We list the contribu-
tions at each order. At N3LO, we separate the terms that
do not depend on EM LECs (i.e. the LOOP contribution
and the contact MIN currents; the former depends on the
known axial coupling constant, gA, and pion decay am-
plitude, Fπ , while the latter depends on the strong LECs
entering the NN χEFT potential at N2LO) and those
that depend on them (i.e. the contact NM and the OPE
current whose isovector component has been saturated
with the ∆ transition current). In most cases, chiral
convergence is observed but for the isovector N3LO OPE
contribution whose order of magnitude is in some cases
comparable to the OPE contribution at NLO. It is likely
that the explicit inclusion of ∆ degrees of freedom in the
present χEFT would significantly improve the conver-
gence pattern, since in such a theory this isovector OPE
current, presently entering at N3LO, would be promoted
to N2LO.

In Table VI, we do not provide the errors associated
with the individual terms at each order because they are
highly correlated. We limit ourselves to report the errors
associated with the IA, MEC, and total results. Also
in this table, we denote calculations performed enforcing

• They are essential for low-momentum and 
low-energy transfer transitions.

 The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation

r · JEM + i[H, J0
EM] = 0

• The above equation implies that          involves 
two-nucleon contributions.

JEM

⇡

� ⇡ ⇡

⇡ ⇡ ⇢,!

S. Pastore at al., PRC 87, 035503 (2013)



Quantum Monte Carlo
• Diffusion Monte Carlo methods use an imaginary-time projection technique to enhance the 

ground-state component of a starting trial wave function.
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• Suitable to solve of A ≤ 12 nuclei with ~1% accuracy

J. Carlson et al. RMP 87, 1067 (2015)
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final state
��Y f

↵
with momentum Pµ

f = (E f ,P f ), and momentum conservation implies qµ =

pµ
e � pe

0µ = Pµ
f �Pµ

i . Furthermore, the interaction proceeds through the exchange of a space-
like virtual photon, for which q2

µ = w2 �q2 < 0†. In electron-induced reactions w and q can
vary independently (provided that |q| > w), as opposed to reactions induced by real photons
where |q|= w . In elastic reactions w = 0 (neglecting the recoil of the nucleus), which implies
|Yii =

��Y f
↵
. Reactions in which w 6= 0 are instead called inelastic. To different values of

w = E f �Ei, correspond different excitation energies of the nucleus. As w increases to a
few MeV, low-lying (discrete) nuclear excited states can be accessed. For energies transferred
of the order of ⇠ 10� 30 MeV, giant resonance modes in the continuum spectrum of the
nucleus are excited, while for values of wq.e. ⇠ q2/(2m) quasi-elastic effects dominate, in
which the reaction is in first approximation well described as if electrons were scattered off
single nucleons. Beyond the quasi-elastic energy region, meson production can be observed.
A schematic representation of the double differential cross section for electron scattering at a
fixed value of momentum transfer q is provided in Figure 7.

Because in inelastic electron scattering w and q can vary independently, for each value
of excitation energy w , one can study the matrix elements’ behavior as a function of the
momentum transfer. In particular, by varying q one changes the spatial resolution of the
electron probe, which is µ 1/|q|. At low values of momentum transfer, electron scattering
reactions probe long ranged dynamics, while at higher values of momentum transfer shorter
distance phenomena are tested, where dynamics from heavier mesons and baryons become
relevant.

Figure 7. (Color online) Schematic representation of the double differential cross section at
fixed value of momentum transfer.

Cross sections for elastic scattering and scattering to discrete excited states, for which
the transferred energy w is fixed, are expressed in terms of longitudinal (or charge) and
transverse (or magnetic) form factors, which are functions of the momentum transferred
q = |q|, and provide information on the e.m. charge and current spatial distributions inside
the nucleus. The double differential cross section for inclusive processes, in which only
the scattered electron is detected, is expressed in terms of the longitudinal and transverse

† The four-vector squared qµ qµ is here denoted with q2
µ .

Schematic representation of the inclusive cross section as a function of the energy loss.

Lepton-nucleus scattering 

Courtesy of Saori Pastore



Lepton-nucleus scattering 
The inclusive cross section of the process in which a lepton scatters off a nucleus can be written 
in terms of five response functions

`

`0

�, Z,W±

| 0i

| f i

• The response functions contain all the information on target structure and dynamics
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• In the electromagnetic case only the longitudinal  
and the transverse  response functions contribute

R↵�(!,q) =
X

f

h 0|J†
↵(q)| f ih f |J�(q)| 0i�(! � Ef + E0)

• They account for initial state correlations, final state correlations and two-body currents

+=



Moderate momentum-transfer regime 

• Both initial and final states are eigenstates of the nuclear Hamiltonian

• Relativistic corrections are included in the current operators and in the nucleon form factors

• At moderate momentum transfer, the inclusive cross section can be written in terms of the 
response functions

• As for the electron scattering on 12C

R↵�(!,q) =
X

f

h 0|J†
↵(q)| f ih f |J�(q)| 0i�(! � Ef + E0)

H| f i = Ef | f iH| 0i = E0| 0i

|12C⇤i, |11B, pi, |11C, ni, |10B, pni, |10B, ppi . . .|10Be, ppi
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Integral transform techniques  
• The integral transform of the response function are generally defined as

• Using the completeness of the final states, they can be expressed in terms of ground-state 
expectation values

K

E↵�(�,q) ⌘
Z

d!K(�,!)R↵�(!,q)

E↵�(�,q) = h 0|J†
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At finite imaginary time the contributions from 
large energy transfer are quickly suppressed

Euclidean response function 
Valuable information on the energy 
dependence of the response functions can 
be inferred from their Laplace transforms

The system is first heated up by the transition operator.

Its cooling determines the Euclidean response of the system

Quantum Monte Carlo

Zero Temperature
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Diffusion Branching
In nuclear physics, we have a!
set of amplitudes for each spin !
and isospin

Brownian motion
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Same technique used in Lattice QCD, condensed 
matter physics…



12C electromagnetic response 

• Good agreement with data without in-medium modifications of the nucleon form factors

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.
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clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
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dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.
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scattering as being dominated by single-nucleon knock-
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response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
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FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!+
el

d! e�!⌧ R↵(q,!)

[Gp
E(q,!)]

2

, (2)

where Gp
E(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!

el

is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵(q)e

�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,
(3)

where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E(q,!) [15]. The
calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E

0

) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?
f � E

0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-
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tric form factor, and, as a consequence, to a significant
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clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.
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work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
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1b), correlations and interaction ef-
fects in the final states redistribute strength from the
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fer regions; and (iii) while the contributions from two-
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in the threshold region, those from two-body currents
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the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
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of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
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rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

AL et al. PRL 117 082501 (2016)AL et al. PRL 117 082501 (2016)

• Need to include relativistic corrections in the kinematics

12C, q=570 MeV



• We computed the neutrino and anti-neutrino differential cross sections for a fixed value of the 
three-momentum transfer as function of the energy transfer for a number of scattering angles

12C neutral-current cross-section 

4

one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
nents of the weak neutral current, jNC

↵ = jV NC
↵ + jANC

↵ ,
do not interfere; in these cases, R↵� =RV NC

↵� +RANC
↵� and

the separated RV NC
xx and RANC

xx are illustrated in Fig. 2.
By contrast, the xy response function arises solely on ac-
count of this interference. The ANC contribution to R↵�

is typically much larger than the V NC one (for example,
RANC

xx ' 3⇥RV NC
xx ). Furthermore, one expects in 12C the

00 and xx V NC response functions to be proportional to
the longitudinal and transverse electromagnetic response
functions RL and RT via RV NC

00/xx ' RL/T /4, since the

isoscalar and isovector pieces in jV NC are related to the
corresponding ones in the electromagnetic current jEM

by the factors, respectively, �2 sin2✓W and (1�2 sin2✓W )
(sin2✓W ' 0.23), and the matrix elements of these pieces
add up incoherently in the response of an isoscalar target
such as 12C. Lastly, we note that two-body terms in the
ANC increase the one-body RANC

xx response by about
20% in the quasi-elastic region. This increase is much
larger than the ' 2–4% that is obtained in the case of
Gamow-Teller rates between low-lying states near thresh-
old, induced by the axial component of the weak charged
current [24].

In Fig. 3 we show the ⌫ and ⌫ di↵erential cross sec-
tions for a fixed value of the three-momentum transfer as
function of the energy transfer for a number of scattering
angles. In terms of these variables, the initial energy E
of the neutrino, shown in the insets of Fig. 3, is given by

E =
!

2

"
1 +

s

1 +
Q2

!2 sin2(✓/2)

#
, (4)

and its final energy E0 =E � !. Because of the can-
cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
⌫ cross section decreases rapidly relative to the ⌫ cross
section as the scattering angle changes from the for-
ward to the backward hemisphere. For this same rea-
son, two-body current contributions are smaller for the
⌫ than for the ⌫ cross section, in fact becoming negligi-
ble for the ⌫ backward-angle cross section. As the angle
changes from the forward to the backward hemisphere,
the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!) � Rxy(q,!). In terms of initial and final
neutrino energies E and E0—the kinematical variables
most relevant for the analysis of accelerator neutrino

FIG. 3. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with with one- and one- and two-body terms
in the NC. The final neutrino angle is indicated in each panel
and the initial neutrino energy is shown in the inset.

experiments—we note that E ranges from 1–2 GeV at
✓=15� to 0.3–0.5 GeV at ✓=120�, and so the present
results computed at fixed q=570 MeV/c as function of
! span a broad kinematical range in terms of the vari-
ables E and E0.

This research is supported by the U.S. Depart-
ment of Energy, O�ce of Science, O�ce of Nu-
clear Physics, under contracts DE-AC02-06CH11357
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course, these considerations remain valid for the elastic
contributions alluded to earlier in Eq. (3).

Figure 1 shows that contributions from two-body terms
in the NC significantly increase (in magnitude) the re-
sponse functions obtained in impulse approximation (i.e.,
with one-body currents) over the whole quasi-elastic re-
gion, but for R00 on the low ! side. This enhancement
is mostly due to constructive interference between the
one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
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old, induced by the axial component of the weak charged
current [24].
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cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
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course, these considerations remain valid for the elastic
contributions alluded to earlier in Eq. (3).

Figure 1 shows that contributions from two-body terms
in the NC significantly increase (in magnitude) the re-
sponse functions obtained in impulse approximation (i.e.,
with one-body currents) over the whole quasi-elastic re-
gion, but for R00 on the low ! side. This enhancement
is mostly due to constructive interference between the
one- and two-body current matrix elements, and is con-
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course, these considerations remain valid for the elastic
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larger than the ' 2–4% that is obtained in the case of
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In Fig. 3 we show the ⌫ and ⌫ di↵erential cross sec-
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and its final energy E0 =E � !. Because of the can-
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proportional to the Rxx and Rxy response functions, the
⌫ cross section decreases rapidly relative to the ⌫ cross
section as the scattering angle changes from the for-
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son, two-body current contributions are smaller for the
⌫ than for the ⌫ cross section, in fact becoming negligi-
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the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!) � Rxy(q,!). In terms of initial and final
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FIG. 3. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with with one- and one- and two-body terms
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and the initial neutrino energy is shown in the inset.

experiments—we note that E ranges from 1–2 GeV at
✓=15� to 0.3–0.5 GeV at ✓=120�, and so the present
results computed at fixed q=570 MeV/c as function of
! span a broad kinematical range in terms of the vari-
ables E and E0.
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• We computed the charged-current response function of 4He 

Charged-current results 

• Two-body currents have little effect in the vector term, but enhance the axial contribution at 
energy larger than quasi-elastic kinematics

4He, q=300 MeV



• We computed the charged-current response function of 4He 

Charged-current results 

• Two-body currents have a sizable effect in the transverse response, both in the vector and in 
the axial contributions

4He, q=300 MeV



Spectral function approach

The spectral function yields the probability of removing a nucleon with momentum k from the 
ground state leaving the residual system with excitation energy E.

Jµ !
X

i

jµi

Neglecting (for now) two-body currents and assuming the factorization of the final state

The response function is sum of scattering processes involving individual bound nucleons

| f i ! |pi ⌦ | f̃ iA�1

Approximate spectral functions are based on electron 
scattering data and on the local-density approximation

Ph(k, E) = P 1h
h (k, E) + P corr

h (k, E)
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R↵� =

Z
d3k

(2⇡)3
dEPh(k, E)

X

i

hk|ji †↵ |k + qihk + q|ji� |ki�(! + E � ek+q)

Ph(k, E) =
X

f

|h A
0 |[|ki ⌦ | A�1

f i]|2�(E + EA�1
f � EA

0 )
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• We implemented vector and axial vector relativistic two-body currents in the factorization scheme

We developed an highly-parallel Monte 
Carlo integration code

No need to use approximations such that 
of the “frozen nucleons”

The calculation of the MEC current matrix 
elements is carried our automatically

Simplifies the use of a different version of 
the MEC 

• We employ the factorization of the two-body spectral function, related to

n(k1,k2) = n(k1)n(k2) +O
⇣ 1

A

⌘
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We are improving this approximation 
using the cluster-expansion formalism

{
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Analogy with the “short-time approximation” 
and the “contact formalism” 

Neutrino-nucleus scattering 

E. Hernandez et al. PRD 76, 033005  (2007)



Neutrino-12C charged-current scattering 

⌫

µ�
W+

• Two contributions mostly affect the ‘dip’ region

• Meson exchange currents strongly enhance the cross section for large 
values of the scattering angle



Neutrino-12C charged-current scattering 

W�µ+

⌫̄

NR, C.Barbieri, O. Benhar, A. De Pace, A. Lovato, arXiv:1810.07647
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values of the scattering angle
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Spectral function approach
We extended the spectral function approach to include pion-production mechanisms

| f i ! |pi ⌦ |p⇡i ⌦ | f iA�1

Good agreement with experimental data, although some strength is missing in the Delta region

N. Rocco et al. in preparation
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Summary and plans

• GFMC calculations of 12C electromagnetic responses in good agreement with experiments.

• Two-body currents enhance the electromagnetic, neutral- and charged-current responses  

 GFMC Plans

• GFMC calculations of the charged-current neutrino and anti-neutrino scattering off 12C

• Interference term in the factorization ansatz within the cluster expansion formalism

• We extended the factorization scheme to include relativistic two-body currents and (some) pion-
production mechanisms

Current status

• GFMC calculations of the spectral function of light nuclei

• Extend the spectral function approach to account for the resonance production mechanism

Z
dEe�E⌧Ph(k, E) ⇠

h 0|a†ke�(H�E0)⌧ak| 0i
h 0|e�(H�E0)⌧ | 0i


