Latest results on Trigger Rates, Momentum spread Particle Identification and Beam Composition

M. Rosenthal, A.C. Booth, N. Charitonidis, P. Chatzidaki, Y. Karyotakis, E. Nowak, I. Ortega-Ruiz, P. Sala

06.12.2018

Updates on Trigger Rate and Momentum Spread Studies

marcel.rosenthal@cern.ch

Trigger Rates

- Measured trigger rates have been compared to Geant4 and FLUKA simulations
- A 95% percent efficiency for each trigger plane has been assumed.
- The data has been normalized to 1 Mio. events on the secondary target (VLE-target)
 - 1-3 GeV/c tungsten
 - 4-7 GeV/c copper

Momentum Spread

- Measured distribution for "7 GeV/c" has been compared to Geant4 and FLUKA
- Collimator opening: 88 mm.
- Data has been normalized to same integral between 6 and 8 GeV/c (arbitrary vertical axis)
- Systematic shift of 1.45mm in x has been applied to third spectrometer plane
 - See talk by A. Booth

Dependence on Collimator Slit

- Variation of trigger rate and momentum spread with respect to different collimator openings have been studied for 7 GeV/c (95% efficiency per trigger plane)
 - Expected trigger rate in Geant4 is slightly larger (normalization, misalignments, possible).
 MC simulates ideal beam line.
 - Observed momentum spread variation similar to simulated values.

Particle Identification

Overview of PID

- Particle Identification based on:
 - Time-of-flight between XBTF687 and XBTF706
 - Cherenkov Signal in Cherenkov1 (C1, 713) and/or Cherenkov2 (C2, 716)
- TDC Timestamps of Cherenkov Signals and Hits in the four XBTF sections matched to a particle trigger in defined time window.
- Optimum case:
 - One possible TOF combination and one or no timestamp matched to each particle trigger

Time-of-Flight

- Problem: observed that many trigger events allow for multiple possible TOF times in defined time window
- Four channels: (XBTF687A, XBTF687B), (XBTF716A, XBTF716B)
 - 0/1 total timestamps \rightarrow 0 TOF combinations
 - 1 timestamp, 1 timestamp → 1 TOF combination (golden)
 - 2 timestamp, 1 timestamp \rightarrow 2 TOF combinations
 - 1 timestamp, 2 timestamp → 2 TOF combinations
 - 2 timestamp, 2 timestamp → 4 TOF combinations

Time-of-Flight (Channel-wise study)

- Question: If AA has a valid TOF combination, does BA also provide a valid TOF combination for the same event?
- Answer: Very often, yes!
 - The timestamp in XBTF716A is usually the same for both calculated TOF.
 - The signal from XBTF687B comes simultaneous ΔTOF ≈ 0ns, or The signal from XBTF687B comes 4-5 ns earlier: ΔTOF ≈ +4-5ns with respect to XBTF687A

Time-of-Flight (Channel-wise study)

- Question: If BB has a valid TOF combination, does AB also provide a valid TOF combination for the same event?
- Answer: Very often, yes!
 - The timestamp in XBTF716B is usually the same for both calculated TOF.
 - The signal from XBTF687B comes simultaneous ΔTOF ≈ 0ns, or The signal from XBTF687B comes 4-5 ns earlier: ΔTOF ≈ +4-5ns with respect to XBTF687A

Mitigation

- Combine TOF information with Cherenkov information:
 - Example: 1 GeV/c: C1 not used, C2 @ 1bar for positron tagging
 - If C2 sees light, assume the particle is a positron:
 - In case of multiple TOF, check if valid calib. TOF between 85-110 ns exists \rightarrow Positron
 - If C2 doesn't see light, assume particle is either pion/muon or proton.
 - Proton significantly slower (calib. TOF: 115ns 160ns)
 - In case of multiple TOF, check if valid calib. TOF between 115ns 160ns exists \rightarrow Proton
 - ELSE: In case of multiple TOF, check if valid calib. TOF between 85-110 ns exists \rightarrow Pion/Muon

Results for 1 GeV/c

- Calibration of TOF depending on channel AA, AB, BA, BB:
 - Between 65.5-66.5ns subtracted from each channel

Results for 2 GeV/c

• C1 is not used, C2 sees light only for positrons.

Results for 3 GeV/c

- C1 (high pressure) sees light for positrons, pions and muons
- C2 (low pressure) sees light only for pions

Results for 6 GeV/c

- C1 (high pressure) sees light for pions, muons, positrons and kaons
- C2 (low pressure) sees light for pions, muons and positrons

Summary of Compositions

• Default target: W for 1-3 GeV/c, Cu for 4-7 GeV/c (measured data for 2 GeV/c was taken with Cu target)

Comparison to MC

• Default target: W for 1-3 GeV/c, Cu for 4-7 GeV/c (measured data for 2 GeV/c was taken with Cu target)

Positrons

Pions/Muons (+Positrons >4 GeV/c)

marcel.rosenthal@cern.ch

Comparison to MC

• Default target: W for 1-3 GeV/c, Cu for 4-7 GeV/c (measured data for 2 GeV/c was taken with Cu target)

Protons

Kaons

Summary

- Advanced study of observed trigger rates, momentum spread and particle identification analysis
- PID analysis combines the results from Cherenkov detectors and time-of-flight on an event-by-event basis.
 - A 4-5 ns problem could be identified, which is probably related to the XBTF687B detector/TDC channel.
 - Often (but not always) simultaneous TOF events in combinations AA&BA or AB&BB. (2 TOF per event)
 - TOF reconstruction in channels BA or BB often 4-5 ns longer than in AA/AB.
 - For analyzed data mitigated using the combination of TOF and Cherenkov data to identify the particle species for each trigger
- Measured trigger rates, momentum spread and beam composition similar to expected values from GEANT4 and FLUKA simulations

