
FELIX readout status

DAQ Workshop
2019-02-04

Roland Sipos
CERN EP-DT

FELIX recap

The Front-End Link eXchange is the upgraded readout system of the ATLAS
experiment :

● Approach relying on servers and
COTS to do data processing

○ PCIe based FPGA custom card
○ Networked scalable system in

ProtoDUNE Single Phase

● FELIX firmware and software
tuned for specific use case

● Software trigger matching
● Software compression

○ Hardware accelerated with Intel® QuickAssist Technology (QAT)

2

Modifications for ProtoDUNE

● In order to sustain the high rate of incoming frames (2 MHz) and high
throughput requirements, modest modifications of the firmware were
introduced:

○ Chunks are packed together (x12) in order to minimise memory-copy effort at the publisher
software level. Rate of networking calls is also greatly reduced.

■ 2MHz of 464B -> 166kHz of 5568B
○ DMA payload (block) size increased (1 ->4 kB) in order to optimise parsing.

● FELIX publisher - felixcore:
○ Removal of block and chunk copy pipelines

3

Topology for beam run

APA6 readout

● We started off with default DAQ servers (Dell R730 , dual 8 cores @2.1 GHz)
○ Infamous “10 links problem”: Discovered that the present servers are not capable (memory bus

limitation) to support the full load of one APA. 7 out of 10 links can be run stably.
○ Resorted to using 2 FELIX servers, which ran very stably and successfully throughout beam

data taking

● FELIX is a high I/O performance application
○ Good knowledge of tuning techniques is important
○ Choosing optimized software and I/O protocols is vital

● With the hardware we had at hand we decided to not test any merging of
FELIX and BR functionality

5 links

5 links

4

New FELIX hosts

2 new servers for hosting FELIX cards
(srv-025, srv-026)

Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz

● # of Cores 12

● # of Threads 24

● Processor Base Frequency 3.00 GHz

● Max Turbo Frequency 3.70 GHz

● Cache 24.75 MB L3

● # of UPI Links 3

● TDP 150 W

5

And it worked like a charm

● 10 links sustained over several
days without need for restarting felixcore

● Discussion with Intel experts
○ Main bottleneck understood:

DELL machines memory throughput problems
■ STREAM memory benchmark

● Bottom line:
FELIX is sensitive to hosting
servers’ specifications.
Keep and eye on:

○ benchmark of CPUs,
○ maximum memory throughput,
○ NUMA setup of MOBO.

■ Interrupt affinities
■ Thread core pinning

6

New topology

● APA5 moved to FELIX readout
● Mellanox boxes are ConnectX-5 100Gb NICs.
● 019 is connected to the chain for testing and performance optimization

RDMA

IB

IB

IB

APA6
10 links

10 links
APA5

np04-srv-021

np04-srv-019

np04-srv-022

np04-srv-025

np04-srv-026

7

BR optimization

● New netio version ensures the STOP-START capability
○ Already integrated and it works. On extremely rare occasions, some instability with re-subbing

● Sustaining >40Hz of trigger rate is problematic
○ Either memory throughput limit or QAT load balancing of compression.
○ Statistics shows increased compression time required using the embedded QAT solution
○ Under investigation (also communicating with Intel experts)
○ Some driver/software tweaks already improved the situation a bit
○ NIC and QAT sits on same NUMA node (but we need a riser to move the NIC)

● Cleaning up code-base
○ BR relies on 3 main dependencies (Netio high level network lib, libfabric, QAT driver)

■ Fabric and QAT driver should be a UPS product (not so simple for QAT)
○ Preparing documentation
○ Automation aspects -> Ansible role for full publisher and BR host setup

8

Main objective - short term

Utilize a single host’s capabilities as much as possible

● Trigger primitive finding in software, using AVX registers
○ Phil has a functional application to do hit finding

■ Integration to the BR code is done
■ Performance optimization is ongoing

○ Self triggering in ProtoDUNE is not so far from reality

● Running data processing on FELIX host
○ A BR version that directly reads and processes data from the FELIX DMA circular buffers
○ Initial tests shows high cost for moving around data in memory (queueing in)

■ 1 CPU (12 cores) is almost fully used (~85% CPU utiliziation)
■ Few more “tricks” are under investigation

● Don’t “serialize-then-move” data, but scatter-gather chunks into destination buffer
● Exploit NUMA locality: FELIX node and associated cores are only responsible for

chunk parsing and stream continuous WIB frames to the other NUMA node for data
processing.

■ Some additional FW changes could result with substantial gain for reducing CPU/memory
bandwidth requirements

9

Summary

● ProtoDUNE DAQ has reached a remarkable quality considering the project
timescale and the “recycling approach” taken to meet deadlines

○ It is not comparable to DUNE in many aspects
○ It allows a playground to develop ideas for DUNE (2019++)

● We got away with loose ends and shortcuts that would be show stoppers, if
they were repeated in DUNE

○ A much more rigorous specifications/design work has to be carried out
○ ProtoDUNE allowed to build up a great team: if we keep the momentum (and know how) all

elements are there to make the DUNE DAQ

10

Backup slides

11

BoardReader implementation

● The FELIX BoardReader is implemented as part of the artdaq data acquisition
framework

● Receives and buffers data continuously
○ One subscriber thread for each link populating

a SPSC queue (lock-free implementation from the Folly library)
○ A specialized thread extracts data from buffer,

matching a 5 ms time-window based on the
trigger request from Event Builders
at ~25Hz (baseline rate, achieved 60 Hz)

○ Re-ordering and compression of data
○ Complete fragment with compressed

data is sent downstream to EventBuilders

12

Fragment compression

● ProtoDUNE target compression factor set to 4
(implications in storage hardware projections)

○ Efficient compression can be achieved by re-ordering the frames to contiguous ADC data for
individual channels

● Compression should also keep up with the 25 Hz trigger rate and the about
46 Mbytes payload size

● Hardware accelerated compression
○ Intel® QuickAssist Technology (QAT)
○ Under study at CERN
○ Can offload the CPU and compress faster
○ DEFLATE algorithm
○ Intel® Xeon® Scalable processors with integrated QAT support used in BoardReader hosts

■ C628 chipset
○ Allows a reduction of the time required for the compression of one data fragment

■ from about 100-200 ms (software only)
■ to about 5-9 ms (accelerated)

13

