
Online Software
Inter-process Communication

Brett Viren
Physics Department

DUNE DAQ WS – 4 Feb 2019



Outline

Introduction and Scope

Common IPC System

Online Software Application Design

Development and Demonstration

Brett Viren (BNL) IPC 4 Feb 2019 2 / 27



Introduction and Scope

Current DAQ Subsystem Concepts

• Many “boxes” (applications) needed, but also many “arrows” (IPC).
• Implementing arrows takes comparable effort boxes.
• Many shared requirements for the arrows.
• We should avoid creating a “babel” of IPC implementations.

Brett Viren (BNL) IPC 4 Feb 2019 3 / 27



Introduction and Scope

Inter-Process Communication (IPC)

processes tightly coupled functionality bound into an application,
operating “locally” on input message, producing output
messages.

communication asynchronous exchange of units of data obeying well
defined message schema and protocol contracts.

• Bulk of a process is the application logic, but a sliver of each must deal
with the communication.

• Two independent applications must share a common communication,
they can’t each invent something.

Brett Viren (BNL) IPC 4 Feb 2019 4 / 27



Introduction and Scope

Established and Missing IPC

+ artDAQ has a well developed IPC
+ whatever RDBMS we use (eg, PostgreSQL) has its IPC
+ “OS-level” Apache/Ganglia/Superivord/Puppet/etc
? Internal comms between Run Control / CCM applications?
? RC to basically everything else?
? Trigger / Data Selection internals?
? Inter-module trigger exchange?
? Trigger command hand-off to Back-End?
? Front-end buffer data query/response?
? Monitoring, logging from essentially everything.
? extra-DAQ interfacing (eg CISC, det h/w)
? what do I miss?

Brett Viren (BNL) IPC 4 Feb 2019 5 / 27



Introduction and Scope

Proposal

Develop a single, common IPC covering the missing IPC.

Require that DAQ applications:
• Use it for all inter-subsystem IPC.
• Use it for any intra-subystem IPC where it’s needed.

Brett Viren (BNL) IPC 4 Feb 2019 6 / 27



Introduction and Scope

Some Requirements on common IPC system

• Satisfy latency and throughput needs (inter– and intra–subsys).
• Support formally defined message schema and protocols with versioning.
• Provide mechanisms for redundancy, discovery and presence.
• API for application development.
• Portable and with minimal and stable dependencies.

Brett Viren (BNL) IPC 4 Feb 2019 7 / 27



Introduction and Scope

Scope and implementation of the Common IPC

? artDAQ is one player in this space and we must leverage it, not replace it.
Does it make sense for artDAQ to become the basis for all subsys?

? NetIO is used at protoDUNE/FELIX for transfer of full data from FE to the two
BE computers. DUNE FD won’t do this but should NetIO also be
considered as a basis?

• I don’t know these answers with 100% certainty, but I feel the common
IPC should be built from a more general base.

• I’ll describe what I think is right for implementing a common IPC system
but think of it as a proposal of work.

• If more or less accepted, I’d like to lead the effort to develop it and I’ll
need some help.

! Discussion and buy-in by all subsystems are needed to determine a
proper scope and design for a common IPC.

Brett Viren (BNL) IPC 4 Feb 2019 8 / 27



Common IPC System

Introduction and Scope

Common IPC System

Online Software Application Design

Development and Demonstration

Brett Viren (BNL) IPC 4 Feb 2019 9 / 27



Common IPC System

Common IPC System Scope

• Methods to formally define message schema and code
generation for functions to operate messages

o eg, to form/parse/send()/recv()

• A set of C++ shared libraries providing IPC functionality for
DAQ application development.
• A C++ API which supports layered entry points to match the

diversity of application development
o eg layers: function primitives→ toolkit→ application framework

• Proper factorization of concerns
o general purpose core libraries.
o DUNE DAQ semantics as extension libraries.

• Python API bindings.

Brett Viren (BNL) IPC 4 Feb 2019 10 / 27



Common IPC System

Next I give an outline of the Common IPC System based on
prototype software I’ve been developing at

https://github.com/brettviren/digrex

The most recent and promising line is in dexnet/

I take dexnet as working title for now.

Brett Viren (BNL) IPC 4 Feb 2019 11 / 27

https://github.com/brettviren/digrex
https://github.com/brettviren/digrex/tree/master/dexnet


Common IPC System

dexnet Foundational Dependencies

ZeroMQ provides high-performance networking abstractions.

Protobuf candidate support for structured message data.

nlohmann/json modern C++ JSON support, another candidate for handling
structured message data.

Jsonnet powerful, simple human-oriented configuration language.

Boost for various C++ supports, including Boost.SML state machine.

Waf for portable build system.

Brett Viren (BNL) IPC 4 Feb 2019 12 / 27



Common IPC System

ZeroMQ

ZeroMQ high performance, high level socket(2)
abstractions, variety of communication patterns,
reliable, robust against connectivity loss and
congestion, support multiple types of transport.

CZMQ High-level C bindings to ZeroMQ, behavior patterns:
actor, poller, looper, auth/auth.

Zyre A CZMQ actor providing network discovery and
presence.

Comments:
• All are C libraries and usable in C++, minimal dependencies, very portable,
• Free Software (LGPL), long lived, strong and helpful development community.

Brett Viren (BNL) IPC 4 Feb 2019 13 / 27



Common IPC System

ZeroMQ Transports

Three types message transports supported:
1 inproc://thread-label between threads in the same process

2 ipc:///path/to/pipe between processes on the same computer

3 tcp://hostname.dune.daq:1234 over the network

Application is independent of the transport.
• Transport is run-time configuration with strings like the above.
• We can develop DAQ applications which scale from threads to processes

to computers with no code changes. Clear benefit for DUNE DAQ.

Brett Viren (BNL) IPC 4 Feb 2019 14 / 27



Common IPC System

Sample of ZeroMQ socket patterns

PUB/SUB subscribe to topic, receive published messages, topic filtering
on PUB side (don’t send unwanted messages). After subscribe,
async, one-way streaming. (drops)

PUSH/PULL unidirectional, “FIFO”. (blocks)

REQ/REP classic client/server, synchronous. (blocks)

ROUTER/DEALER advanced extension to REP/REQ. (blocks)

PAIR Exclusive peer connection, two-way async “pipe”. (blocks)

• Except for PAIR, M-to-N connectivity pattern may be used as good redundancy
mechanism.

• The “(blocks)/(drops)” indicates what happens if the socket maintained internal
buffer reaches its adjustable high-water mark.

• There are additional socket types available, these are most common.

Brett Viren (BNL) IPC 4 Feb 2019 15 / 27



Common IPC System

CZMQ Actor

A function running in a thread communicating
via a thread-safe, bidirectional pipe (PAIR socket).

dexnet uses the actor pattern as a basic building block for its
mid-level application API. More on this in a bit.

Brett Viren (BNL) IPC 4 Feb 2019 16 / 27



Common IPC System

Zyre Actor

An actor which implements network discovery and presenece
(as well as a simple form of many-to-many “group chat” like communication).

Discovery:
• Send UDP broadcast beacon containing:
→ identifier (a name), an endpoint string and set of key/value pairs.

• Listen on endpoint, respond to any peer beacons by
sending above info to peer’s endpoint.
• The time scale for discovery is 1-2 seconds.

Presence:
• Peer heartbeat messages at configurable interval.

o heartbeats use both UDP and TCP (efficient vs reliable)

• Timeout interpreted as a loss of presence, Zyre actor notifies
the rest of the application so that it may react.

Brett Viren (BNL) IPC 4 Feb 2019 17 / 27



Online Software Application Design

Introduction and Scope

Common IPC System

Online Software Application Design

Development and Demonstration

Brett Viren (BNL) IPC 4 Feb 2019 18 / 27



Online Software Application Design

API Layers of dexnet

An application may be developed leveraging as little or as
much of dexnet as desired. In order of increasing abstraction:

1 No dexnet, application uses raw socket(2) and fully handles responsible
for proper message forming/parsing.

2 Replace raw socket(2) with ZeroMQ sockets.

3 Use dexnet message schema codegen to provide form/parse code.

4 Use dexnet graph abstractions (described next).

5 Bundles those abstractions in form of actor but manages its lifetime.

6 Provides one or more actors in a dexnet plugin library and use
dexnet-agent command line application for fully configuration-driven
application aggregation.

Brett Viren (BNL) IPC 4 Feb 2019 19 / 27



Online Software Application Design

dexnet Ported Graph Abstraction

node a procedure operating asynchronously from others.
port a labeled point of a node through which data flows.

edge a connection between two ports which transmits
messages following one or more protocols

message a typed unit of data transmitted along an edge
protocol a set of message types and expected behavior of

their transmission.

Note: any connected subgraph of a ported graph may be recast into a single
ported node. This has strong implications on complexity management.

A node may be a fundamental actor, an actor which manages other actors
(an “agent”), a logical subgraph, or an application that merely provides or
emulates ports.

Brett Viren (BNL) IPC 4 Feb 2019 20 / 27



Online Software Application Design

Actor Example

Four actors work together to process data

• The “actor pipes” (PAIR sockets) speak
“control” protocol sending RC
commands to the actors.

• Actors create additional sockets and
bind/connect to endpoint addresses
based on “control” protocol
messages and initial configuration.

• The “ribbon” protocol is the exchange
of working data.

File
Source

control
PAIR

Pusher

control
PAIR

Puller

control
PAIR

Puller

control
PAIR

ribbon
PAIRPAIR

ribbon
RRPULL

PUSH

PUSH

• The “control” protocol connects to RC directly, or via intervening application code.
• Actors may be in individual applications communicating across network or

aggregated into one and communicating across local thread-safe queues.

Brett Viren (BNL) IPC 4 Feb 2019 21 / 27



Development and Demonstration

Introduction and Scope

Common IPC System

Online Software Application Design

Development and Demonstration

Brett Viren (BNL) IPC 4 Feb 2019 22 / 27



Development and Demonstration

dexnet Development Effort

• A lot of prototyping exists already so many problems worked out.

• My intention (if the consortium is behind it) is:
o Make dexnet a higher priority (it’s mostly been a “weekend project” so far).
o Complete remaining prototype issues.
o Move the code into production quality code base.
o Along the way, respond to input from DAQ application developers.

• I think I need a minimum of two or three part-time individuals to closely
collaborate on design, development and testing.

• It would be best if these individuals were using their other part-time to
develop the “business logic” of actual DAQ applications.

Brett Viren (BNL) IPC 4 Feb 2019 23 / 27



Development and Demonstration

Timeline

• I am a bad judge of time.
• But, I feel the effort for dexnet + applications is comparable

to what was needed for the Wire-Cell Toolkit
• That is now in its ≈3rd year.
• WCT had off-again/on-again effort, so “3 years” should be in quotes.
• Much of the core development of WCT has been in place a while

and it’s mostly been new “application” (“algorithm”) work lately.

• So, I think, given the help, the dexnet core might take 6
months to a year to be very usable.
• Full “business logic” applications need their own timeline

estimation but it should progress in parallel with dexnet
development.

Brett Viren (BNL) IPC 4 Feb 2019 24 / 27



Development and Demonstration

ProtoDUNE Demonstration
Paraphrasing Dave Newbold:

Splice in a software trigger into current protoDUNE timing
system based trigger to test stuff.

dash: hard wired
dots: network
solid: full data

Brett Viren (BNL) IPC 4 Feb 2019 25 / 27



Development and Demonstration

ProtoDUNE Demonstration Caveats

• We can (and will) test dexnet without protoDUNE.
• Writing protoDUNE “adapters” will take real work.
• We need to understand what collective/emergent

features/problems such a demonstration would test in
exchange for the effort.

Brett Viren (BNL) IPC 4 Feb 2019 26 / 27



FIN

Brett Viren (BNL) IPC 4 Feb 2019 27 / 27


	Introduction and Scope
	Common IPC System
	Online Software Application Design
	Development and Demonstration
	

