DUNE FD Calibrations Consortium

José Maneira (LIP), Kendall Mahn (MSU)

December 20, 2018

Outline

- Welcome!
 - List of institutes/members
- Consortium organization
 - General meetings and tools
 - Sub-groups
- Discussion
 - Calibration system requirements
- Main tasks ahead
 - TDR
 - prepare prototypes for tests at proto-DUNE and elsewhere
 - funding proposals

Welcome!

- Univ. of Bern
 - Igor Kreslo, Michele Weber
- Boston Univ.
 - Chris Grant
- Colorado State Univ.
 - Mike Mooney
- Univ. of California at Davis
 - Bob Svoboda, Jingbo Wang
- Univ. of Hawaii
 - Jelena Maricic
- Univ. of Iowa
 - Jane Nachtman, Yasar Onel

- LIP, Portugal
 - Lisbon: Sofia Andringa, Fernando Barão, Nuno Barros, José Maneira, Amélia Maio, Gersende Prior
 - Coimbra: Francisco Neves, Vladimir Solovov
- Michigan State University
 - Kendall Mahn
- Univ. of Pittsburgh
 - Donna Naples, Vittorio Paolone
- South Dakota Sch. Mines Tech.
 - Juergen Reichenbacher
- Univ. of Tenessee, Knoxville
 - Sowjanya Gollapinni

Calibration Mandate

- "The initial goals of this new Consortium will be the design and prototyping of a laser calibration system, a neutron generator, and a possible radioactive source system in preparation for the TDR."
- This means
 - 3 sub-systems: laser, neutron source, radioactive source
 - Initial goals: design and prototyping, TDR
 - Later goals: building the systems for DUNE
- Calibration Task Force
 - CTF is maintained at least through to the TDR
 - Close collaboration in setting specifications/goals

Organization

Organization

- Initial appointment by Spokespeople of
 - Consortium Leader (CL): J. Maneira
 - Technical Leader (TL): K. Mahn
- Consortium management rules are stated in the DUNE management plan <u>DocDB-2145</u>
- Consortium Board
 - one member per institution (please indicate)
 - for now: no CB meetings, only mailing list
- Project Management Board
 - CL + TL + TC (E. James) + lead national project managers
 - propose to set up after TDR

Working Groups

- Form a Working Group for each subsystem
 - can have dedicated meetings, tools, etc...
 - CL/TL nominated WG leaders

Working Group	Leader
Laser	S. Gollapinni
Pulsed Neutron Source	J. Wang
Radioactive Source	J. Reichenbacher

Online Tools

- Consortium mailing list:
 - <u>dune-fd-clbrt-cnsrt@fnal.gov</u>
- Wiki:
 - <u>https://wiki.dunescience.org/wiki/</u> <u>Joint_Far_Detector_CLBRT</u>
- Indico
 - <u>https://indico.fnal.gov/category/925/</u>

Requirements \rightarrow Specifications/goals

Specifications/goals

- An important component of the TDR will be the setting of requirements.
- Stefan SR:
 - "LBNC has emphasized the importance of requirements at several of the past meetings and its recommendations."
 - "We are moving away from requirements to newly defined 'goals' and 'specifications', which better fit the problem."
- <u>Specification:</u> This is the intended value for the parameter or, more often, the upper or lower limit for the parameter.
- <u>Goal:</u> This is an improved value that offers some benefit, and the collaboration aims to achieve this value where it is cost effective to do so.
 - See DocDB 11074 and 11431

Top level specifications

(under discussion)

Parameter	Specification	Goal
Drift field	$>250 \mathrm{V/cm}$	500 V/cm
Electron lifetime	$>3 \mathrm{ms}$	$10 \mathrm{~ms}$
System noise	< 1000 enc	ALARA
Light yield	>0.5 p.e./MeV	5 p.e./MeV
Time resolution	$<1~\mu{ m s}$	100 ns

TABLE I: Summary of high-level design specifications.

11

(ALARA: As Low As Reasonably Achievable)

Other scientific specs

Parameter	Specification	Goal
Gaps between APAs		
on same support beams	<15 mm	ALARA
on different support beams	<30 mm	ALARA
Field non-uniformity throughout volume		ALARA
due to component alignement	$<\!1\%$	ALARA
due to HV system	<1%	ALARA
APA wire angles		
X and G	0°	
U and V	$\pm 35.7^{\circ}$	
APA wire spacing		
X and G	4.669 mm	
U and V	4.790 mm	
APA wire position tolerance	$\pm 0.5 \text{ mm}$	ALARA
HV PS ripple contribution to system noise	<100 enc	ALARA
Front-end peaking time	$1 \ \mu s$	adjustable
Signal saturation level	\sim 500,000 electrons	
LAr nitrogen contamination	<25 ppm	ALARA
Detector down time	< 0.5%	ALARA

TABLE II: Summary of other scientific design specifications.

(under discussion)

Engineering design specs

Specification	Goal
$>1 M\Omega/cm^2$	$1~{ m G}\Omega/{ m cm}^2$
see text	
$\sim 2 \text{ MHz}$	
12	
< 50 mW/channel	ALARA
< 30 PB/year	
>90% for dist <100 kpc	
< 30 kV/cm	ALARA
$\ll 1000 \text{ enc}$	ALARA
$\ll 30 \text{ ppt}$	ALARA
below ³⁹ Ar	ALARA
$<\!1\%$	ALARA
	$>1 M\Omega/cm^2$ see text $\sim 2 MHz$ 12 <50 mW/channel <30 PB/year >90% for dist<100 kpc <30 kV/cm $\ll 1000 enc$ $\ll 30 ppt$ below ³⁹ Ar

TABLE III: Summary of engineering design specifications.

(under discussion)

Calibration specs

- Level 2 are the high level Scientific and Engineering specifications
 - Need to identify them and discuss with EB
- Level 3 are the consortium-owned specifications
 - To be listed in the TDR, but up to CTF and us.
- <u>Need input from consortium</u> on
 - what is important, what should be our specifications/ goals?
 - once we identify those, which to make L2?
- Consider
 - 3 systems: laser, neutrons, source
 - 4 categories: physics, DAQ, interferences, safety

1. Physics/Detector perf.

- "Scientific" (or High Level)
 - From IDR, vol. 1, p. 4-47
 - "...calibration information needs to provide approximately 1-2% understanding of normalization, energy, and position resolution within the detector."
 - How well do we need to measure Efield distortions?
 - Recombination studies indicate: 4% Efield distortions lead to 1% bias in energy
 - Existing EB spec: Distortion due to HV/APA shifts < 1%
 - Shall our calibration spec be 4% Efield knowledge? more studies?
 - In what fraction of the fiducial volume?
 - How well can we extrapolate from boundary cond.?
 - Corners vs. middle
 - Low energy scale/resolution/trigger efficiency
 - ~20% energy should be good (SN studies ongoing)

1. Physics/Detector perf.

- "Engineering" (or Lower Level)
 - Laser:
 - Length of track in LAr, or beam divergence
 - Accuracy of knowledge of beam direction
 - Neutrons:
 - Effective attenuation length of neutrons from filter > x
 - Pile-up vs. pulse width settings
 - Activation of cryostat materials
 - Source
 - Efficiency to create 9 MeV gammas (or, how well will we know the 9 MeV gamma rate)
 - Contamination from residual source neutrons

2. DAQ/data taking

- Scientific
 - Noise: EM shielding of DD generator and laser
 - Impact of calibrations on detector down time
 - what is down time when we use triggered sources ?
 - laser run plan: one drift volume at a time. turn PDS off?
 - neutron source: for how long after the pulse trigger are do we create a background for SN? (not blind, though)
 - Interlock: stop laser or DD generator in case of SN trigger
 - With current limits on data volume, can we calibrate to required precision?

3. Interference w/ other systems

- Laser
 - E field distortion from FC penetration ?
 - collision with non-uniformity spec of < 1%
 - Degradation of detector components ?
 - interlock to turn off PDS? Can SiPMs take the hit?
 - long terms effects on scint seem low.
- Neutrons
 - If we don't use manhole or feedthrough, how big a hole can be made in cryo insulation?
 - Weight of system, support on cryo and other structures
- Source and Laser
 - Impact on LAr purity
- All: installation logistics constraints

4. Detector and personnel safety

- Laser
 - Class 4 laser.
 - Closed box, operator training
 - Special conditions for initial alignment
- Neutrons + source
 - Radiological safety. Dose specs @ SURF ?
 - Design of shielding, storage, DD gen. locking
- Laser + source
 - pressure rating of feedthrough flanges

Next steps on req.

- Please comment!
 - What did we forget?
 - Help us to quantify any of these issues:
 - values for specifications AND goals
 - Which ones should be level 2 specs?

Tasks ahead

TDR

- Kendall and Sowjanya taking the lead on this
- Physics TDR
 - <u>https://docs.google.com/document/d/</u> <u>lohDorJxncQrBPq16ZUiBDBluLtr27efcYy5YJBtHo</u> <u>HQ/edit</u>
 - Comments deadline: Jan 2nd.
- Detector TDR (SP)
 - Draft 1: March 1, 2019
- Detector TDR (DP)
 - Draft 2: May 10, 2019

Technical Coordination

- We need to identify consortium points-ofcontact with TC on:
 - Quality Assurance/Quality Control
 - Electrical Safety & Hazards

proto-DUNE

- Design prototypes
- Plan for
 - differences between DUNE and proto-DUNE
 - safety issues at CERN (laser and radiation)
- Organize
 - link tasks to institutes
 - coordinate funding proposals

funding

- group/institute base/startup funds
- MRI call for neutron source
- Early career awards?
- Portugal funding agency call next year
 - plan to ask for (parts of) construction of laser + neutron prototype
 - not including laser + DD gen itself.

