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1 Introduction to the Physics of Massive Neutrinos

Concha González-Garćıa (YITP-Stony Brook U. & ICREA-U.Barcelona)

Maria.Gonzalez-Garcia@StonyBrook.edu

1 Show that only for a free massless fermion the chirality eigenstates are also helicity eigenstates.

2 Show that the mass matrix M of a Majorana mass

−LMaj = −1

2
νL,iMij(νL,j)

c + h.c (1)

must be symmetric Mij = Mji.

3 Show that if there are N = 3 + s massive neutrinos, the leptonic mixing matrix is dimension 3 × N
and contains 3s + 3 physical angles and 2s + 1 phases for Dirac neutrinos and 3s + 3 for Majorana
neutrinos

4 The decay width for β decay N → Pe−ν̄e after integrating over the proton momentum is

dΓ = G2
F cos2 θCF (E,Z)2π

∑

spin

∑

i

|Uei|2|ūe(p)γ0(1− γ5)vνi(k)|2
d3p

(2π)32E

d3k

(2π)32w
δ(E0 − E − w) (2)

GF is Fermi constant, θC is Cabbibo’s angle, F (E,Z) a Coulomb factor, E0 is the mass difference
between the initial and final nuclei, E is the electron energy and w is the neutrino energy. Obtain the
electron energy spectrum dΓ/dE and show that the Kurie function

K(T ) ≡




dΓ

dE
C F (E,Z) |~p|E




1/2

=

√
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|Uei|2
√

(Q− T )2 −m2
i (3)

'
√√√√(Q− T )

√
(Q− T )2 −

∑

i

|Uei|2m2
i

with Q = E0 −me y T = E −me y C = G2
F cos2 θC/π

3. Show that the last equality holds only for

Q− T � mi and
∑

i

|Uei|2 = 1.

Plot K(T ) as a function of T for tritium (Q = 18.6 KeV) for mβ =
√∑

i |Uei|2m2
i = 0 and for

mβ =
√∑

i |Uei|2m2
i = 2.2 eV.
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5 The charged pion decays almost 100% of the time into a muon and a (muon-type) neutrino (π+ → µ+νµ)
In the reference frame where the parent pion is at rest, compute the muon energy as a function of the
muon-mass (mµ), the charged pion mass (mπ), and the neutrino mass (mν). What is the absolute value
of the muon momentum (tri)vector? Numerically, what is the relative change of the muon momentum
between mν = 0 and mν = 0.1 MeV? It is remarkable that the muon momentum from pion decay at
rest has been measured at the 3.4× 10−6 level (Phys. Rev. D53, 6065 (1996)). This provides the most
stringent current constraint on the muon-neutrino mass.

6 Derive the characteristic E/L in eV2 for atmospheric neutrinos, and for T2K and for Daya-Bay.

7 Show that in a disappearance experiment the survival probability for neutrinos and antineutrinos is
the same.

8 a) What is the matter potential for ντ → νs? (νs is an sterile neutrino) Compare with the potential
for νe → νµ,τ
b) In the core of a supernova the matter density is ρ ∼ 1014 g/cm

3
. Obtain the characteristic value for

the matter potential for forντ → νs and ν̄τ → νs in the core of the supernova c) For what characteristic
mass differences (assume Eν ∼ 10MeV ) can occur the MSW effect in such supernova? In which of the
two channels occurs?

2 Neutrino Detection

Mark Messier (Indiana University)

messier@indiana.edu

1 Neutrino detector Livingston plot

The Livingston plot is a famous representation of progress in the construction of particle accelerators.
This problem asks you to prepare a similar plot to show progress in neutrino detectors.

The first neutrino detector “El Monstro” was constructed by Reines and Cowan in the 1950s. For each
decade since then and looking ahead into the future, find a few representative neutrino detectors and
tabulate some essential data summarizing the detector technology. For example: experiment name,
dates of operation, detection technology, mass (in tons), granularity (is cm). If you can find it, also
detector cost. You are encouraged to divide the task among several groups and share your data to
ensure the best possible coverage.

With the data in hand, what plot or plots can you make which best represent progress in neutrino
detector technology?

2 Magnetic DUNE

Suppose you wanted to magnetize the future DUNE detector to allow for 3σ particle-by-particle electron
vs. positron separation at 2 GeV. How large a field is required? Compare the energy stored in the field
to the total energy used by the residents of Lead, SD in a single day. Suggest how you might construct
such a field and estimate the cost of the materials required.

3 Side-by-side

Many of you no doubt work on current neutrino experiments and are expert with the simulation
programs of those experiments. Using your collaboration’s simulation tools, make event displays for
the following neutrino topologies ranging from 10 MeV to 1 TeV. To aid the problem, a text file
containing exact neutrino interaction topologies to simulate are posted here:

https://docs.google.com/document/d/14dfU7gHvea_iLyb_TKxVGvR0B-bG-BJP96OgOHjk6H0/edit?

usp=sharing

You may choose to skip energies that are well below and/or well above the detector’s capabilities but
try to push the simulated energy as range to be as wide as possible.

2

https://docs.google.com/document/d/14dfU7gHvea_iLyb_TKxVGvR0B-bG-BJP96OgOHjk6H0/edit?usp=sharing
https://docs.google.com/document/d/14dfU7gHvea_iLyb_TKxVGvR0B-bG-BJP96OgOHjk6H0/edit?usp=sharing


4 Future beam

Propose a design for a near detector for a future beta beam (see, for example, Phys.Lett. B532 (2002)
166-172) which is targeted toward a distant mega-ton scale water Cherenkov detector.

3 Phenomenology of Accelerator and Atmospheric Neutrinos

Concha González-Garćıa (YITP-Stony Brook U. & ICREA-U.Barcelona)

Maria.Gonzalez-Garcia@StonyBrook.edu

1 Understanding the Atmospheric Neutrino Data
Read the article “Super-Kamiokande Atmospheric Neutrino Results” by T. Toshito, hep-ex/0105023.
It contains an old summary of the atmospheric neutrino data. The talk by T. Kajita, presented at the
Neutrino 1998 Conference, may also prove helpful in understanding some of the Super-Kamiokande
terminology: hep-ex/981001.

1. Numerically calculate and draw histograms of the average muon neutrino survival probability in
ten equal-size bins of cos θx where θx is the angle between the neutrino direction and the vertical-
axis at the detector’s location (θx = 0 for neutrinos coming straight from above, and θx = π for
neutrinos coming from below). For simplicity, assume two flavor νµ → ντ transitions. Make one
histogram for Eν = 0.2 GeV, 2 GeV, and 20 GeV and

∆m2 = 2.5 × 10−4 eV2, 2.5 × 10−3 eV2, and 2.5 × 10−2 eV2, for a grand total of nine plots.
Assume throughout that the mixing is maximal, i.e., sin 22θ = 1, and that neutrinos are produced
20 km above the surface of the Earth.

2. Look at Figure 1 in the paper and compare with the results you got in part 1. Can you verify
that ∆m2 = 2.5× 10−3 eV2 and sin2 2θ = 1 is a good fit to the data (200 MeV is characteristic of
sub-GeV events, 2 GeV is typical of multi-GeV events, and 20 GeV is typical of upward stopping
muons. The fourth category, upwardthrough- going muons, has an average energy above 100
GeV.)?

3. Use the number of observed sub-GeV “e-like” events (as these seem to agree well with Monte Carlo
predictions) to obtain an order of magnitude estimate of the electron neutrino flux (neutrinos per
unit time and unit area). The cross section for detecting neutrinos at this energy range is roughly
5 fb.

2 You want to design an accelerator neutrino oscillation experiment which is sensitive to oscillations with
|∆m2 = 3× 10−3| eV2 and to the ordering. For this you want the contribution of the matter potential
to the oscillation phase to be 20% of the ∆m2

31 contribution at oscillation maximum. At what distance
from the source do you have to put your detector?

4 Long Baseline Oscillation Experiments

Patricia Vahle (William and Mary), Jeff Hartnell (Sussex)

plvahle@wm.edu

Long-baseline neutrino oscillation experiments seek to measure CP violation, the mass hierarchy and the
octant of θ23 using electron (anti)neutrino appearance and muon (anti)neutrino disappearance in a muon
(anti)neutrino beam.

The NOvA experiment has a baseline of 810 km and a peak neutrino energy of 1.9 GeV. For the pur-
poses of these problems, except as noted, consider the NOvA electron (anti)neutrino appearance and muon
(anti)neutrino disappearance measurements as a “counting” experiment where you consider the beam to be
monochromatic. Similarly, consider backgrounds and systematic uncertainties to be negligible compared to
statistical uncertainties, again except as noted in individual problems.
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For this question you should consider three flavor neutrino oscillations. The standard two flavor approx-
imations will be insufficient.

Consider the duration of the NOvA experiment as an exposure of 36× 1020 protons on target which may
be divided between neutrino and antineutrino beams.

For an exposure of 6× 1020 protons on target the following electron (anti)neutrino signal (S) and back-
ground (B) counts are expected. In neutrino-mode: B=7.75, S=24.19(13.76), 17.93(11.07), 27.85(18.88) for
δCP = 0, π/2, 3π/2 NH(IH) and sin2 θ23 = 0.5, sin2(2θ13 = 0.085, sin2(2θ12 = 0.87, ∆m2

12 = 7.5 × 10−5eV2

and ∆m2
23 = 2.5 × 10−3eV2. In antineutrino-mode: B=2.87, S=7.58(8.91), 8.53(11.40), 5.58(7.68) for the

same parameter values.
Assume the backgrounds are independent of the oscillation parameters.
For background information please have a look at https://arxiv.org/abs/1210.1778.

1 NOvA must decide how to operate their beam. The choice ranges from operating the beam in neutrino
mode 100% of the time, through to 100% in antineutrino mode. What is the optimal run plan for
NOvA to determine specifically the mass hierarchy?

Consider the following scenarios for true oscillation parameters:

– Normal mass hierarchy, sin2(θ23) = 0.6 and δCP = 3π/2

– Normal mass hierarchy, sin2(θ23) = 0.4 and δCP = 3π/2

– Inverted mass hierarchy, sin2(θ23) = 0.6 and δCP = 3π/2.

– Inverted mass hierarchy, sin2(θ23) = 0.4 and δCP = π/2.

How does your proposed run plan depend on the oscillation parameters that Nature has chosen? What
would your run plan be in those specific scenarios? What should the run plan be when we don’t know
what Nature has chosen?! Do you need to run antineutrinos? Invent a physics scenario of your own
choosing that might cause you to make the incorrect hierarchy selection. Do a quantitative analysis of
this scenario to see if such a thing is really possible.

If you have time, consider the sensitivity to the octant (and CP violation) and consider the optimal
run plan to measure those parameters.

2 If you were designing NOvA from scratch, what choices might you make to increase the sensitivity of
the NOvA experiment to the mass hierarchy? Consider the beam power at NuMI as a fixed input, and
analyze your optimized experiment or experiments quantitatively.

5 Statistical Methods in Neutrino Physics

Tom Junk (Fermilab)

trj@fnal.gov

1 Show that the maximum-likelihood combination of several independent measurements with identical
but uncorrelated Gaussian uncertainties is the average of the measurements.

2 If the uncertainties are different for each measurement, show that the maximum-likelihood combination
is

xcomb =

∑
xi/σ

2
i∑

1/σ2
i

where the ith measurement is xi ± σi. What is the total uncertainty on the combined xcomb?

3 For what range of µ is the median nmed of the Poisson probability distribution

P (n|µ) =
µne−µ

n!

equal to zero? For what range of µ is nmed = 2? Using a Gaussian approximation, for what range of
µ is nmed = 10000?
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4 Two measurements m1 = 10.1 and m2 = 10.2 of the same quantity have systematic uncertainties that
are correlated c1 = 1.5 and c2 = 1.6, respectively (they come from the same source), and uncorrelated,
u1 = 1.1 and u2 = 1.0.

a What is the correlation coefficient ρ from the covariance matrix between the two measurements?

b Combine the two measurements using BLUE, obtaining a central value and the total uncertainty.
Find the weights w1 and w2.

c Suppose now that u1 = 0 and u2 = 0. Combine again. What are the weights? What is the total
uncertainty on the combined measurement?

5 An experiment measuring a rare process using event counting runs for one year, expects 4.3 background
events and observes ten events. The signal acceptance is 80%. Ignore systematic uncertainties on the
background and acceptance for parts a through g.

a Calculate the maximum-likelihood value of the signal rate in events, and the upper and lower
error bars using ∆ logL = 1/2 rule.

b Calculate the Bayesian 68% confidence interval for the same result.

c Calculate the Feldman-Cousins 68% confidence interval for the same result.

d What is the frequentist coverage of the three methods assuming a true signal rate of 6 events?

e Calculate the 95% CL upper limit on the signal strength in events.

f Calculate the p-value for observing the number of events or more given only the background
hypothesis. Is this enough to claim a discovery? Evidence?

g How many years must the experiment run in order for the median expected p-value to be 2.7 ×
10−7?

h Now add a ±20% relative uncertainty on the background, given a truncated Gaussian prior distri-
bution, and a ±10% uncorrelated uncertainty on the acceptance. Repeat the above calculations.

6 Describe some statistical interpretation problems with this article:

L. Alunni Solestizi et al., 2018 JINST 13 P07003.

https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07003

7 Under what circumstances are profiling and marginalization expected to give the same result for in-
clusion of the effects of nuisance parameters?

6 Short Baseline Neutrino Experiments and Phenomenology

7 Introduction to Leptogenesis

Jessica Turner (Fermilab)

jturner@fnal.gov

1 Assuming a CP T conserving quantum field theory, three conditions (Sakharov’s conditions) are re-
quired for a theory to generate the observed matter anti-matter asymmetry. Can you list these condi-
tions and state why they are necessary.

2 Can you write the mass eigenstates of the active neutrinos assuming they acquire their mass from a
type-I seesaw mechanism.

3 What is the minimal number of right-handed neutrinos, in the type-I seesaw mechanism, needed for
leptogenesis?
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4 How does the type-I seesaw mechanism satisfy Sakharov’s three conditions?

5 Can you draw the tree and one-loop level Feynman diagrams that contribute to the lepton CP asym-
metry?

6 At which temperatures do the three flavors of charged leptons come into thermal equilibrium?

8 Neutrinoless Double Beta Decay Experiments

Cheryl Patrick (University College London)

c.patrick@ucl.ac.uk

1 Consider the Lobster

In the world of neutrinoless double-beta decay, there is a famous plot, which we call the “Lobster” plot
(you can guess why). You can find it in PRL 117, 082503 (2016), but here is a copy:

The Lobster plots the Majorana neutrino mass of neutrinoless double-beta decay vs. the mass of the
lightest of neutrino state. As we don’t know the whether the hierarchy is inverted or normal, we don’t
know whether this is the mass of state ν1 or of state ν3.

The electron-neutrino mass we think about in neutrinoless double beta decay is given by the formula:

mββ =

∣∣∣∣∣
3∑

i=3

|Uei|2mie
iαi

∣∣∣∣∣ , (4)

where Uei correspond to the electron components of the PMNS mixing matrix, mi are the three neutrino
mass states (let’s hope there are no sterile neutrinos!) and α1 and α2 are the two Majorana phases,
which we don’t know.

Your goal for this project is to break through the Lobster’s shell and understand the shape of this odd
plot.

1 The Lobster is wise, and knows some information about mass differences and neutrino mixing
angles, from oscillation experiments. You will need to know this, so write it down now.
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2 The double-beta mass is a kind of effective electron neutrino mass. Experiments like KATRIN,
which look at the beta decay spectrum end-point, also measure an electron (anti)neutrino mass,
which is also a combination of values from the PMNS matrix. Find out the expression for this
mass mβ.

a Does it depend on CP violating phases or Majorana phases? If it does, continue this question
assuming that they are all zero.

b Is it the same as mββ? If not, how does it differ?

c Is it possible for mβ to be zero, given the constraints we have from oscillation experiments?
Using just the oscillation information, can you put any (upper or lower) limits on mβ?

3 Now let’s go back to mββ. Because is a coherent sum of the three mass states, it is affected by
the Majorana phases, which introduce a complex element to the calculation. We can represent
the three components of mββ as vectors in the complex plane. mββ will correspond to the length
of the sum of the three vectors. As there are only two Majorana phases, the m1 component will
be real. Remember, we don’t know the Majorana phases. Here’s what a double-beta sum could
look like:

We are going to consider a few different scenarios, now. What would the diagram above look like
in these situations? Is it possible for mββ to be 0? If so, try to be as quantitative as you can about
when that would be possible. Can you relate what you learn (qualitatively or quantitatively) to
features of the Lobster plot?

a In the inverted hierarchy, when m2 ≈ m1 >> m3

b In the inverted hierarchy, when m2 ≈ m1 >> m3 = 0

c In the inverted hierarchy, when m2 ≈ m1 > m3 >> 0

d In the normal hierarchy, when m3 > m2 > m1 >> 0

e In the normal hierarchy, when m3 >> m2 > m1 = 0

4 If the lightest neutrino is massless, what are the maximum and minimum values for mββ, for the
inverted and the normal hierarchy? How would the vectors in the plot above be arranged in these
cases?

5 What’s the case (or set of cases) that allows mββ to be 0?

6 If the lightest neutrino is heavy, the inverted and normal hierarchies effectively merge into a
“degenerate regime” where all the masses are effectively the same. Can you work out at what
sort of masses we enter this regime, and get an equation for how the lightest mass relates to mββ
in this case?

7 (Bigger project, if you have time) Current double-beta decay experiments can measure masses
of the order of 100 meV. Next generation measurements will be an order of magnitude better
and cover the inverted hierarchy. But oscillation experiments at the moment favour the normal
hierarchy. If that’s what nature has given us, what is our chance of mββ being in our range?

a Use a Monte Carlo technique to calculate values of mββ, in the inverted and normal hierar-
chies, using the numbers we know from oscillation experiments, and using random throws to
generate values for the lightest neutrino mass and the two Majorana phases. Assume that:

i There is no CP violating phase
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ii The probability for the log of the lightest neutrino mass (in eV) is evenly distributed
between 0 and ∼ 4.

iii The probabilities for the two Majorana phases are evenly distributed between 0 and 2π.

b Plot the values you get for the randomly-chosen lightest neutrino mass and your calculated
mββ on 2d histograms (one each for normal and inverted hierarachy). You made your own
lobster plots! What did you learn?

c Now you’re at it, why not try calculating mβ as well and plot mβ vs mββ?

2 Your 0νββ future

It’s 2030, England has just won the World Cup, and you’ve just landed a top job at Fermilab! What
a great year! Even more exciting, LEGEND http://legend-exp.org and NEXO https://nexo.

llnl.gov experiments have just announced that they have observed neutrinoless double-beta decay.
LEGEND measured a half-life of 5× 1027 years for their isotope, while NEXO measured a half-life of
7.5× 1027 years. In each case, they have a 20% uncertainty on their measurement.

– What neutrino mass limits do these correspond to? (Hint: arXiv:1610.06548 [nucl-th])

– Do you think the two measurements are compatible? (Think about the different isotopes and how
they behave differently).

– What half-life would you expect SNO+ https://www.snolab.ca/science/experiments/snoplus to
measure?

– Do they tell us anything else about the nature of the neutrino?

Now that neutrinoless double beta decay is in the news, Fermilab wants you, their hottest new scientist,
to design a new experiment to learn more about it. There’s lots of cash available, and you have access
to the resources of the lab and the current far detector locations of the Fermilab oscillation experiments.
Propose your new design! Some things to think about:

– What do you aim to learn with your new experiment? (Think about nuclear physics, mass
hierarchy, double-beta decay mechanisms).

– What isotope(s) would you use? How much will you need, and what do you estimate it will cost?
Why is this a good choice? Do you save on other detector components? Can your detector be
used for anything else as well?

– What detector technology will you use? Feel free to be creative and steal the best ideas from
current detectors like KamLAND Zen, GERDA, SNO+, SuperNEMO, and CUORE.

9 Lepton-Nucleus Cross Section Theory

Noemi Rocco (Argonne National Lab & Fermilab)

c.patrick@ucl.ac.uk

1. Consider the charge-current scattering process: ν−` + n→ `− + p where ` = e, µ, τ .

• What is the minimum value of the energy transfer ω for which the reaction can take place?

• Consider the case in which ` = µ− and the elastic scattering happens on a neutron at rest, i.e.
the neutron quadri-momentum is given by (mn, 0) and the proton (mp + ω,q). Show that the
reconstructed neutrino energy reads

Eν =
m2
p −m2

n −m2
µ + 2mnEµ

2(mn − Eµ + pµ cos θµ)
, (5)

where θµ is the muon angle relative to the neutrino beam.
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• Write down the analogous expression for a moving neutron in the initial state, i.e. (En,pn). To
derive the neutrino energy expression, define the angle between the neutron and the neutrino
beam momentum as cos θn = (kν · pn)/(|kν ||pn|).

2. The most general expression for the hadronic tensor is constructed out of gµν and the independent
moment of the initial nucleon p and the momentum transfer q, yielding

Wµν = −W1g
µν +

W2

m2
N

pµpν + iεµναβ
W3

2m2
N

pαqβ +
W4

m2
N

qµqν +
W5

m2
N

(pµqν + pνqµ) (6)

where Wi are called structure functions and mN is the nucleon mass.

• In the electromagnetic case parity-violating effects are NOT present. The hadronic electromag-
netic current matrix elements are polar-vectors and so the tensor must have specific properties
under spatial inversion. In particular, in this case W3 = 0. The current conservation condition at
the hadronic vertex requires

qνW
µν = qµW

µν = 0 (7)

As a result of this relation, verify that only two structure functions are independent and the
hadronic electromagnetic tensor reads

Wµν = W1

(
gµν +

qµqν

q2

)
+
W2

m2
N

(
pµ − p · q

q2
qµ

)(
pν − p · q

q2
qν

)
(8)

• For the scattering process ν−µ + n → µ− + p, the double-differential cross section is proportional
to

d2σ

dEµdΩµ
∝ LµνWµν . (9)

The contraction between the leptonic and hadronic tensor can be rewritten as

LµνW
µν =

16

m2
N

5∑

i=1

LiW
i (10)

where the W i are the structure functions reported above and Li are leptonic factors, you can find
the explicit expression in in Nucl. Phys. A 789, 379 (2007) or try to compute them. How would
this generic expression change for the ν̄µ scattering process?

10 Origin and Nature of Neutrino Mass

Goran Senjanović (ICTP)

goran@gssi.infn.it

These problems cover the essence of my course. The first problem is simply a summary of Dirac and
Majorana spinors in the two-component form. This material is a pre-requisite, so I strongly advice you to
find some time to go through it in case you are not familiar with the math and physics of Dirac and Majorana
mass. The other problems cover the lectures’ material and doing them would help tremendously understand
the subtleties of the physics involved. I wish to warn you that there could be misprints or even an occasional
error, so please contact me if you have any comments or questions regarding this material.

Problem 1

A four-component Dirac spinor transforms under the Lorentz group as

Ψ→ SΨ, S ≡ eiθµνΣµν , (11)
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with

Σµν ≡ 1

4i
[γµ, γν ], {γµ, γν} = 2gµν , (12)

with the explicit form for Dirac matrices in my conventions

γ0 =

(
0 I
I 0

)
, γi =

(
0 σi

−σi 0

)

1. Show that the Σµν satisfy the Lorentz algebra. You can do in a generic manner, or even better, by
separating the rotations and boosts, and then check the usual relations among rotations and boosts.

2. Introduce Left and Right chiral spinors

ΨL,R ≡
1± γ5

2
Ψ ≡ L (R) Ψ (13)

γ5 = −i γ0 γ1 γ2 γ3

or

γ5 =

(
I 0
0 −I

)

Using Eq. (1), show that

uL(R) → ei~σ/2(~θ±i~φ)uL(R) (14)

where

ΨL =

(
uL
0

)
, ΨR =

(
0
uR

)

What does ~θ represent? And ~φ?

3. Take a boost in the z-direction and find an expression for ~φ.

4. Define charge-conjugation transformation

Ψc ≡ CΨ
T

(15)

with
CT γµC = −γTµ , CT = C† = C−1 = −C

An explicit choice: C = iγ2γ0.

Show that
Ψc → SΨc (16)

when Ψ→ SΨ. In other words, Ψc transforms the same way as Ψ, i.e. it is also a proper spinor.

5. Take

Ψ = ΨL =

(
uL
0

)

Compute Ψc. What is its chirality ?

6. What happens to uL and uR under parity? By definition, under parity transformation

Ψ→ γ0Ψ

in order to have the four vector Ψ̄γµΨ behave correctly (three-vector and a scalar).
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Now take a four-component Majorana spinor ΨM , defined by

ΨM = Ψc
M

1. Show that ΨM can be written as

ΨM =

(
uL

−iσ2u
∗
L

)

or equivalently

ΨM = ΨL + C ΨL
T
. (17)

2. Take the free Majorana Lagrangian

L = iΨ̄Mγ
µ∂µΨM −mΨ̄MΨM (18)

Show that this is equivalent to

L = iu†Lσ̄
µ∂µuL −

1

2
m
(
uTL iσ2uL + h.c.

)
(19)

where σ̄µ = (1;−σi) (and σµ = (1;σi), which enters for RH spinors).

3. Show the following vector current vanishes

Ψ̄Mγ
µΨM

Can you explain why?

Hint: can there be invariance under ΨM → e−iαΨM?
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Problem 2

Multi-generation see-saw mechanism. This exercise serves to understand the properties of Majorana
spinors and the seesaw mechanism of neutrino mass - an important aspect of the course.

We introduce a gauge singlet fermion, the so-called RH neutrino νR, per generation and write down the
most general Yukawa interaction for n generations

LY = ν̄R Φ̃† YD `L + νTR C
M†N

2
νR + h.c. (20)

where we use a compact notation for the following vectors in the generation space

νR =




ν1

.

.
νn



R

, `L =




`1
.
.
`n



L

(21)

with the usual notation for leptonic and Higgs doublets

`iL =

(
νi
ei

)

L

, Φ̃ = iσ2Φ∗ (22)

Thus, in (20), YD and MN are n× n matrices in the generations space.

• Show that MN is a symmetric matrix. This is a general property of Majorana mass matrices of the
same species of particles.

• Show that (20) is invariant under the SM SU(2)× U(1) gauge symmetry.

• Introducing
NiL ≡ Cν̄TiR (23)

show that (20) can be written as

LY = NT
L C ΦT (−iσ2)YD `L + NT

L C
MN

2
NL + h.c. (24)

• From the usual form for the Higgs doublet in the unitary gauge

Φ =
1√
2

(
0

h+ v

)

show

Lmass = NT
L CMDνL + NT

L C
MN

2
NL + h.c. (25)

where

MD =
YD v√

2
(26)

• Show next

Lmass =
1

2

[
νTL M

T
D C NL + NT

L MD C νL + NT
L MN C NL

]
+ h.c.. (27)

In other words, one has a mass matrix (up to a factor 1/2) between νL and NL

MνN =

(
0 MT

D

MD MN

)
(28)
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• Assume MN �MD and show that (28) can be put in block-diagonal form as

DνN =

(
Mν 0
0 MN

)
(29)

by a unitary transformation
UT MνN U = DνN

where

U =

(
1 Θ†

−Θ 1

)
(30)

and
Mν = −MT

DM
−1
N MD (31)

with Θ = M−1
N MD, and where only terms up to order Θ2 are considered.

• Next diagonalize symmetric matrices Mν and MN by unitary matrices VL and VR

Mν = V ∗LmνV
†
L (32)

and similarly for MN . The convention above corresponds to VL being the leptonic mixing matrix (the
PMNS matrix) in the basis of diagonal charged leptons

g√
2
ν̄Lγ

µVLeLW
+
µ (33)

where ν and e stand for all the neutrinos and charged leptons respectively.

Recall that one can always fix such a basis since mixings depend on the relative rotations between
neutrinos and charged leptons - just as in the case of up and down quarks discussed in the class.

• Once obtained, the physical states (eigenstates of mass matrices) can be cast in the 4-dimensional
Majorana form as in the problem 1. Do that and show that the factor 1/2 in (27) is not physical.

• Once neutrinos are massive, there will be flavor mixings in the leptonic sector. As usual, there will be
in general CP phases.

If neutrinos are Majorana particles, is the number of phases the same as in the Dirac case (i.e. the
quark case)? More precisely, we speak here of physical phases that cannot be rotated away by phase
redefinitions. In particular, does one need three generations in order to have CP violation? Compute
the number of physical phases for n generations.
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Problem 3

a. Let us imagine that neutrino is a Majorana particle, i.e. ν ≡ νL + C νL
T . This happens naturally

in the seesaw mechanism of the above problem, when there exist a heavy neutral Majorana lepton

N ≡ NL + C NL
T

, with a mass mN . Neutrino gets a mass through the mixing with N which then
leads to N having weak interaction

L =
g√
2
θW+

µ N̄γ
µLe+ h.c., (34)

where L is the usual chiral projector L = (1 + γ5)/2. In the above formula θ = mD/mN =
√
mν/mN

is the mixing between ν and N , and mD = yDv is the Dirac mass term between ν and N . In the usual
notation, v is the vacuum expectation value v of the Higgs field and yD is what we call the neutrino
Dirac Yukawa coupling defined through the interaction

yDN
T
LCνL(h+ v) + h.c. (35)

i. Compute the decay rate N →W+ + e. Neglect the electron mass.

ii. What is the result in the limit of the vanishing W mass? Does the result depend on how you take
the limit, i.e. whether the gauge coupling g goes to zero or the vacuum expectation value v? Can you
explain what is going on in both cases? This is the test of your knowledge of the Yang-Mills theory.

iii. Is there another decay channel? Recall that N is Majorana particle, or better half-particle and half-
antiparticle.

iv. Compute the lifetime of N .

b. Let us imagine that there is a another heavy W ′ boson with the following interaction

L′ =
g′√

2
W ′+µ [N̄γµL(R)e+ ūγµL(R)d] + h.c. (36)

and assume MW ′ > mN . The notation says that the W ′ has either purely LH or RH couplings.

i. Compute the three body decay rate N → e+ u+ d̄. You can set all masses to zero, except for mN . If
you find it it too long or too hard, use the analogy with the muon 3-body decay, so that you can do
the rest below.

ii. Is this the only channel?

iii. Does the decay rate depend whether the coupling is L or R?

iv. Compute the lifetime of N in this case.

v. Take g′ = g, mν = 0.1eV, mN = 240GeV, mW ′ = 4.8TeV and compare the values for the 2 and
3-body decay rates that you computed. Which is bigger? This situation is a realistic possibility for
the so-called LR symmetric theory that predicted originally massive neutrinos and led to the seesaw
mechanism.
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Problem 4

Left-Right Symmetry and Neutrino mass. As discussed in the lectures, the LR symmetric extension
of the SM, put forward in order to understand parity violation in weak interactions, led originally to the
existence of the RH neutrino and neutrino mass. Moreover, it provides a natural framework for the seesaw
mechanism.

Take a LR symmetric theory based on the gauge group

GLR = SU(2)L × SU(2)R × U(1)B−L

with fermions transforming as

`L =

(
ν
e

)

L

;

(
ν
e

)

R

= `R

qL =

(
u
d

)

L

;

(
u
d

)

R

= qR (37)

so that the covariant derivative is

Dµ = ∂µ − ig ~TL · ~AµL − ig ~TR · ~AµR − ig′
(B − L)

2
Bµ (38)

where

(B − L)` = −`, (B − L)q =
1

3
q (39)

Assume the existence of Higgs triplets ∆L and ∆R in the adjoint representations of SU(2)L and SU(2)R
respectively, with

∆L,R → UL,R ∆L,R U
†
L,R (40)

where
`L,R → UL,R `L,R, qL,R → UL,R qL,R (41)

• Show that the Yukawa interaction

L∆ = y∆

(
`TL C iσ2 ∆L `L + `TR C iσ2 ∆R `R + h.c.

)
(42)

is invariant under GLR. This of course implies the B − L gauge numbers of the triplets to be

(B − L)∆L,R = 2∆L,R (43)

• Take the following potential

V = −µ2
(

Tr∆†L∆L + Tr∆†R∆R

)
+
λ

4

[
(Tr∆†L∆L)2 + (Tr∆†R∆R)2

]

+
λ′

2
Tr∆†L∆L Tr∆†R∆R (44)

– Find under which conditions one gets a minimum

〈∆L〉 = 0, 〈∆R〉 6= 0 (45)

– Show that

〈∆R〉 =

(
0 0
vR 0

)
(46)

preserves the SM gauge symmetry SU(2)L × U(1)Y , with

Y

2
≡ T3R +

B − L
2

(47)

and

Q = T3L + T3R +
B − L

2
(48)
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• Find the masses of the heavy gauge fields W±R and ZR, and determine ZR as a function of the original
fields in (38)

• Show that (42) produces the Majorana mass of the RH neutrino.

• Defining as in the seesaw picture (Problem 3) NiL ≡ Cν̄TiR, show that LR symmetry dictates

MN = VRmNV
T
R (49)

in analogy with the light neutrino mass matrix

Mν = V ∗LmNV
†
L . (50)

In other words, this guarantees that the LH and RH PMNS mixing matrices are given symmetrically.
Show that the above equations correspond to the gauge interactions with the LH and RH W bosons

Lgauge =
g√
2

(ν̄LγµV
†
LeLW

µ
L + ν̄RγµV

†
R eRW

µ
R) (51)

The LH mixing matrix VL is measured by neutrino oscillation experiments, neutrinoless double beta
decay and other low energy experiments, whereas its RH analog VR would be measured principally at
hadron colliders such as the LHC.

• Let us take the LR symmetry a step further, and use it to compute the neutrino Dirac mass matrix.
Take LR to be (generalised) charge conjugation as discussed in the course

ψL → Cψ̄TR (52)

in which case it is to see that Yukawa couplings must be symmetric, and similarly the fermion mass
matrices, in particular the neutrino Dirac mass matrix

MT
D = MD. (53)

Use this to disentangle the seesaw

MD = iMN

√
M−1
N Mν . (54)

Next, for the sake of illustration assume VR = V ∗L which corresponds to the unrealistic unbroken LR
situation, and show that MD takes a simple form

MD = V ∗L
√
mNmνV

†
L (55)

where mN and mν are diagonal heavy and light neutrino mass matrices.

• In the problem 2, one shows that the ν − N mixing matrix is given by Θ = M−1
N Mν , so that for the

above case of LR symmetry being charge conjugation, one obtains

Θ = i
√
M−1
N Mν . (56)

Knowing Θ determines decay rates of N to charged leptons and W, Ni → `jW
+ just as the knowledge

of charged fermion masses determines Higgs decays h→ ff̄ in the SM. It shows that the LR symmetric
theory does for neutrino mass what the SM does for charged fermions - allows to probe their Higgs
mass origin. In the case of neutrinos, their Majorana nature requires the knowledge of both Mν and
MN in analogy of mf in the case of quarks and charged leptons.

Show that for VR = V ∗L , this can be written as

Θ = iVL

√
m−1
N mνV

∗
L (57)

Use this expression to show that the decay rate of Ni into a `j charged lepton is proportional to

Γ(Ni →W`j) ∝ |Vji|2mνi

m2
Ni

M2
W

. (58)

Determine the constant of proportionality using the result of problem 2.
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Problem 5

Effective d=5 interaction for neutrino mass. Imagine that we add no new particles to the SM, in
which case neutrino is massless at the renormalizable d=4 level.

1. Now, add a dimension five operator
(lTLσ2Φ)C(ΦTσ2lL)

M
(59)

where lL is the SM lepton doublet and Φ is the usual Higgs scalar doublet.

2. Show that the above interaction is allowed by the SM gauge symmetry.

3. What happens when the Higgs gets a vev? Compare with the see-saw formula.

4. Show that there are only three ways of writing the above operator. Then show that they are all
equivalent.

5. Go to the physical unitary gauge and determine the leading Higgs boson-neutrino Yukawa interaction
Show that it is proportional to neutrino mass as expected from the Higgs mechanism.

11 Neutrino Astronomy

Francis Halzen (University of Wisconsin)

francis.halzen@icecube.wisc.edu

Cosmic neutrinos are produced in Galactic and extragalactic cosmic accelerators that accelerate protons
(nuclei) to more than a hundred million TeV. Cosmic neutrinos are produced in cosmic beam dumps where
the target is provided by the radiation fields (yes, photons are the target) and dust or molecular clouds
surrounding the accelerator. Given the large luminosity (and not just the high energy) of the accelerators
that we observe, it is believed that the power is provided by the large gravitational energy associated with
the collapse of stars, or with the particle flows into supermassive black holes residing at the centers of active
galaxies (black holes feeding on their own galaxy). Shock waves are believed to be the mechanism by which
1 10

Research the principle of first and second order Fermi acceleration. If you find a really great explanation
on the web or in a text book, let me know. I recommend the early references by E. Fermi.

1. Summarize the essential concept of shock acceleration in less than 3 ppt slides.
2. Make a plot of the velocity of the particles moving across the shock in 4 frames, the lab frame, the

frame where the shock is at rest, the frame where upstream particles are at rest and the frame where the
downstream particles are at rest. (Note the gain in energy when the particle crosses the shock in either
direction).

3. Do the problem set #4 in the problems sets attached below.
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Problems — Neutrino Astronomy 
 
The problem sets accompanying the neutrino astronomy presentation are somewhat different. 
They provide a set of exercises (with solutions) to refresh concepts that may be unfamiliar to 
particle physicists and are relevant to understanding the talk. You may also want to consult 
Wikipedia if you are not familiar with some of the concepts. The 4 sets cover: 
 

n Relativistic kinematics applied to cosmic rays, particle decays and interactions. 
n Particle and photon fluxes from astronomical objects. 
n Interaction lengths, superluminal motion and luminosity. 
n Shock waves and Fermi acceleration. 

 
Francis Halzen 



Series 1 – Relativistic kinematics, Particle Decays

July 29, 2019

Notation: a vector v has a module v and a versor v̂

Ex. 1 — Relativistic kinematics
Atmospheric muons are created at an altitude of about 10 km, with velocity β = 0.999.

1. — Calculate the average distance that they travel before to decay. Do they reach the
ground?

2. — Imagine to be a muon: do you reach the ground?
3. — Do pions generated with the same velocity reach the ground?

Answer (Ex. 1) —

1. — In the reference system of the Earth, the average distance covered by the muons is
given by d = γβcτ0, where γ = 1/

√
(1− β2) = 22.37, cτ0 = 658.7 m :

d = 22.37 · 0.999 · 658.7 m = 14.7 km. (1)

So muons can reach the ground.
2. — In the reference system of the muon obiouvsly its mean lifetime is invariant, τ0, and

the distance that it can cover in this case is:

d = 0.999 · 658.7 m = 658.0 m. (2)

The reason why it can reach the ground is that the distance to be covered is shortened,
h = 10000/γ ' 447.03 m.

3. — Charged pions have a much shorter mean lifetime, cτ0 = 7.8 m, so they can cover a
much shorter length (assuming for simplicity the same γ):

d = 22.37 · 0.999 · 7.8 m = 174.3 m (3)

so they can not reach the ground.

Ex. 2 — Relativistic kinematics
Consider a neutron produced by an astrophysical phenomenon. The energy of the neutron is
equivalent to the energy of a proton accelerated in a fixed gas-target experiment at a center-of-
mass energy of 14 TeV. Consider the target made of hydrogen.

1. — If the neutron would be produced by a cosmic source, what is the order of its energy?

1



Figure 1: Boost from the frame of the center of mass to the laboratory frame. Looking at the Lab frame is
equivalent to look the frame of the center of mass (dashed red box) that is moving with β in the
opposite direction of the rest particle (“2” in the figure).

2. — Which is the maximum distance (in pc and ly units) of its source to be detected un-
decayed on Earth (use the most convenient set of units)? Can the neutron be detected
before its decay if the source is in the milky way bulge? Ignore any interaction along its
path.

Answer (Ex. 2) —

1. — Referring to Figure 1, in the center of mass, each proton has an energy E1 = E2 = E = 7
TeV and a momentum of

E =
√
m2 + p2 ⇒ p1 = p2 = p =

√
E2 −m2 (4)

' E. (5)

To change from the frame of the center of mass (CM) to laboratory frame (Lab) in which
a particle is at rest, the CM frame must be considered moving with a β able to stop one
of the particle, i. e. the particle “2” as shown in Figure 1. This leads to the boost matrix
for the particle at rest in the laboratory frame:

(
m
0

)
= γ

(
1 −β
−β 1

)
·
(
E
p

)
. (6)

Another way to see the boost matrix is with the vectorial notation1. The advantage is an
overall equation, including in one expression the ‖ and ⊥ components of the momentum
respect to the β vector; the disadvantage is that a proper consideration of the vectors
must be taken into account. In this notation, the boost matrix to pass from CM to Lab
is

(
m
0

)
= γ

(
1 β
β 1

)
·
(
E
p2

)
. (7)

Still referring to Figure 1, the β vector is in opposite direction of p2, the particle at rest
1This notation will be used in all these solutions.
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in the lab frame; that yields, using Equation (4),

m = γ
(
E − β

√
E2 −m2

)
= γE


1− β

√

1− m2

E2


 , (8)

0 = �γ
(
βE −

√
E2 −m2

)
⇒ β =

√

1− m2

E2
' 1. (9)

From Equation (9), the Equation (8) gives the γ factor:

m = γE
(
1− β2

)
=
E

γ
⇒ γ =

E

m
≈ 7000. (10)

If the same boost is applied to the particle “1”, which has p1 in the same direction of β,
and the approximations in Equations (5) and (9) are used, the estimation of the particle
energy (and momentum) is

(
E∗

p∗

)
= γ

(
1 β
β 1

)
·
(
E
p1

)
' γ

(
1 1
1 1

)
·
(
E
E

)
⇒ E∗ = 2γE ∼ 1017 eV, (11)

where the index ∗ denotes the laboratory frame.
2. — The maximum distance of its source is:

l∗ = τ∗c = γτcβ ' 2.9 · 1016 km (12)

⇒ l∗ ' 2.9 · 103 ly (13)

⇒ l∗ ' 9.25 · 102 pc, (14)

where γ = En/mn = 1.11 · 108 was used. From these results, it is quite obvious that any
neutron produced in the milky way bulge cannot reach un-decayed the earth surface.

Ex. 3 — Relativistic kinematics
A proton travelling in the space interacts with the cosmic radiation background at 3K.

1. — Calculate the energy threshold of the proton to allow the reactions p+ γ → p+π0 and
p+ γ → p+ e+ + e− in case of frontal collisions.

2. — If the π photo-production cross-section is 100 µbarn and is constant, calculate the
proton mean free path as a function of the energy. Remember that the mean free path is
given by λ = 1/ρσ and ρ = 0.24(kT/}c)3 for a black body.

Answer (Ex. 3) —

1. — Let’s do the calculations for the process p + γ → p + π0. The invariant mass of the
system is conserved:

(pp + pγ)
2 = (p′p + p′π0)2,

where p is the 4-momentum p = (E, ~p).

For the left hand term of the equation:
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(pp + pγ)
2 = p2

p + p2
γ + 2pppγ =

= E2
p − | ~pp|2 + E2

γ − | ~pγ |2 + 2(EpEγ − | ~pp|| ~pγ |cosθ) =

= m2
p +m2

γ + 2EpEγ − 2| ~pp|| ~pγ |cosθ,

where θ is the angle between the proton and the pion.
Hence the full equation becomes:

��m
2
p + 2EpEγ − 2pppγcosθ =��m

2
p +m2

π0 + 2E′pE
′
π0 − 2p′pp

′
πcosθ

At the threshold, p′π = p′p = 0.
Under the hypothesis of high energies, Ep � mp:

2EpEγ(1− cosθ) = 2E′pE
′
π0 +m2

π0 = m2
π0 + 2mpmπ0

Considering that:

mp = 938.27 MeV ≈ 103 MeV
mπ0 = 134.9766 MeV ≈ 102 MeV
2mpmπ0 ≈ 2 · 105 MeV
m2
π0 ≈ 104 MeV → negligible wrt 2mpmπ0

Considering only frontal collisions:

4EpEγ = 2mpmπ0

Ep,threshold =
mpmπ0

2Eγ
' 5 · 1020 eV,

where Eγ ∼ kT = 25 · 10−5 eV.

When the scattering is more complicated, as in the case p+ γ → p+ e+ + e−:

(pp + pγ)
2 = (p′p + p′e+ + p′e−)

2,

m2
p + 2EpEγ − 2| ~pp|| ~pγ |cosθ = m2

p +m2
e +m2

e + 2p′pp
′
e+ + 2p′pp

′−
e + 2p′e−p′e+

��m
2
p + 2EpEγ − 2| ~pp|| ~pγ |cosθ = 4mpme +��m

2
p + 4m2

e

E =
(mpme+m

2
e)

Eγ
' 2 · 1018 eV.

2. — σ(p+ γ → p+ π) = 100 µbarn = 10−32m2

λ = 1/ρσ, with ρ = 0.24(kT/}c)3 = 5 · 1017m−3 → λ = 2 · 105 m.

Ex. 4 — Particles decay
In nature the stable particles are few. Most of them are unstable and they decay. In this exercise
the decay π+ → µ+ + νµ (a mesonic decay) is considered.

1. — Calculate the momentum of µ+ and νµ in the rest frame, assuming the neutrino as
massless.
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2. — The neutrino is not massless but it has a small mass, so far measured only as upper
limit. Measuring the muon momentum, the mass of the νµ can be constrained. How
much must the precision on the measurement of the muon momentum be to determine
the current upper limit of the νµ mass (190 keV).

3. — Assume that the π+ has an initial momentum of 500 MeV (in natural units). If this
momentum is perpendicular to the direction along which the decay in the rest frame of
the pion occurs, how much is the (massless) neutrino energy and how much is the angle
between µ+ and νµ?

Answer (Ex. 4) —

1. — “Neutrino massless” means Eν = pν . Therefore the energy and momentum conservation
yield

mπ =
√
p2
µ +m2

µ + Eν , (15)

0 = pµ + pν . (16)

Through Equation (16), p2
µ = E2

ν . Isolating the root square in Equation (15) and squaring
gives

(mπ − Eν)2 = E2
ν +m2

µ

⇒ m2
π +��E

2
ν − 2mπEν =��E

2
ν +m2

µ,

therefore, with mπ = 139.6 MeV and mµ = 105.7 MeV,

⇒ Eν = pν = pµ =
m2
π −m2

µ

2mπ
= 29.7839183 ' 29.8 MeV (in natural units). (17)

2. — With mν 6= 0, the Equation (15) becomes

mπ =
√
p2
µ +m2

µ +
√
p2
ν +m2

ν , (18)

that leads to pµ:

(
mπ −

√
p2
µ +m2

µ

)2

=
(√

p2
µ +m2

ν

)2

⇒ m2
π +��p

2
µ +m2

µ − 2mπ

√
p2
µ +m2

µ = ��p
2
µ +m2

ν

⇒
(
2mπ

√
p2
µ +m2

µ

)2

=
(
m2
π +m2

µ −m2
ν

)2

⇒ 4m2
π

(
p2
µ +m2

µ

)
=
(
m2
π +m2

µ −m2
ν

)2

⇒ p2
µ =

(
m2
π +m2

µ −m2
ν

)2

4m2
π

−m2
µ. (19)

In case of mν = 0, the Equation (19) gives the Equation (17) (pµ|mν=0 = 29.7839183
MeV). In case of mν = 0.19 MeV,

pµ|mν=0.19 = 29.7834416 MeV (in natural units). (20)

5



Figure 2: Boost for the π+ decay, from the frame of the center of mass (dashed red box) to the laboratory
frame. β is perpendicular to the momentum pν(µ) in the rest of frame.

Therefore the precision required is

δpµ = pµ|mν=0 − pµ|mν=0.19 ' 4.767 · 10−4 MeV ∼ 10−1 keV (in natural units). (21)

3. — Given β a boost vector in the direction perpendicular to the neutrino and the muon
momentum in the center of mass frame as shown in Figure 2, the boost matrix equation
to go from CM reference system to the Lab reference system is:

(
E∗π
p∗π,x

)
= γ

(
1 β
β 1

)
·
(
mπ

0

)
, (22)

where the index ∗ denotes the laboratory frame. This yields

E∗π = γmπ, (23)
p∗π = γβmπ, (24)

as expected. The Equations (23) and (29), considering mπ = 139.6 MeV, give

γ =
E∗π
mπ

=

√
m2
π + p∗π

2

mπ
' 3.72, (25)

β =
p∗π
γmπ

' 0.96. (26)

To boost the neutrino the matrix is:



E∗π
p∗ν,x
p∗ν,y
p∗ν,z


 =




γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1


 ·




Eν
0

pν,y
0


 , (27)

where the index ∗ denotes the laboratory frame. This yields

E∗ν = γEν , (28)
p∗ν,x = γβEν , (29)

p∗ν,y = pν,y. (30)
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Figure 3: Illustration and reference of the Compton scattering process. Suggestion: consider the frame
with the electron at rest. . .

So we obtain:

E∗ν = γEν ,' 110.4MeV (31)

tan θ∗ν =
p∗ν,y
p∗ν,x

=
1

βγ
' 0.28 ⇒ θ∗ν ' 15.64o. (32)

For the µ, in analogous way:

tan θ∗µ =
p∗µ,y
p∗µ,x

=
pν,y

E2
µβγ

' 0.07 ⇒ θ∗µ ' 4o, (33)

therefore the aperture between ν and µ is ' 15.64 + 4 = 19.64o.

Ex. 5 — Interaction photon-matter
When a γ interacts with the matter, several phenomena can occur. Two of them are the pair
production and the Compton scattering.

1. — The pair production is the split of γs in matter/anti-matter pairs. This interaction
occurs only in the presence of a nucleus or a particle. Considering γ → e+e−, γ →
µ+µ− and γ → τ+τ−, how much must the minimum energy of the gamma particle be to
produce these pairs? To which wavelength do they correspond and to which class of the
electromagnetic spectrum (IR, Visible, UV, etc.) do they belong?

2. — The Compton scattering occurs when a photon hits a particle and they are both
scattered away with an energy exchange between them. Considering the γe− interaction
as in Figure 3, derive the “Compton Scatter Formula”, i. e. the functional form of the
wavelength as a function of the scattered angle, and show it in a plot (Suggestion: show
the plot of λ2 − λ1 as a function of φ from 0 to 180o).

3. — Name and explain a third interaction photon-matter process.

Answer (Ex. 5) —

1. — The energy is expressed as in ??, therefore Eγ = p and E` = E¯̀ =
√
m2
` + p2, in

natural units, where ` is e, µ or τ (NB: lepton and anti-lepton have the same mass). The
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minimum case is when p = 0; hence, for the energy conservation,

Eγ = E` + E¯̀ = m` +m¯̀ = 2m`. (34)

Therefore

γ → e+e− : Eγ = 2 · 0.511 ' 1.022 MeV, (35)

γ → µ+µ− : Eγ = 2 · 106 ' 212 MeV, (36)

γ → τ+τ− : Eγ = 2 · 1.777 ' 3.554 GeV (37)

and, remembering that we can divide a length x by }c ' 197 MeV·fm, to convert a
wavelength from natural units to SI,

λe+e− =
2π

1.022
= 6.14 MeV−1 ⇒ 1.26 pm, (38)

λµ+µ− =
2π

212
= 0.03 MeV−1 ⇒ 5.91 fm, (39)

λτ+τ− =
2π

3.554
= 1.77 GeV−1 ⇒ 0.35 fm. (40)

All of them are γ-rays and only the electron-positron production is close to the X-rays.
2. — Labelling the initial and final states of the photon with subscripts 1 and 2 respectively

as in Figure 3, the conservation laws in natural units are

2πν1 +me = 2πν2 +
√
m2
e + p2

e, (41)
p1 = p2 + pe. (42)

Squaring Equation (42) to find p2
e gives

p2
e = (p1 − p2)

2
= p2

1 + p2
2 − 2p1p2 cosφ. (43)

In natural units, 2πν = E = p, therefore Equation (43) becomes

p2
e = (2π)

2
ν2

1 + (2π)
2
ν2

2 − 2 (2π)
2
ν1ν2 cosφ. (44)

Isolating the root square in Equation (41), squaring and substituting p2
e with Equation (44)

yields

m2
e + p2

e = (2πν1 − 2πν2 +me)
2

⇒��m
2
e +((((

((((2π)
2
(ν2

1 + ν2
2)− 2 (2π)

2
ν1ν2 cosφ =

=��m
2
e +((((

((((2π)
2 (
ν2

1 + ν2
2

)
− 2 (2π)

2
ν1ν2 + 2 (2π)me (ν1 − ν2)

⇒− (2π) ν1ν2 cosφ = − (2π) ν1ν2 cosφ+me (ν1 − ν2) ,

therefore, the Compton Scatter Formula is

ν1 − ν2

ν1ν2
=

2π

me
(1− cosφ)

⇒ λ2 − λ1 =
2π

me
(1− cosφ) (in natural units), (45)

⇒ λ2 − λ1 =
h

mec
(1− cosφ) (in SI units). (46)

shown in Figure 4. To make the plot, the following Python code was used:
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Figure 4: Plot of the Compton Scatter Formula

import numpy as np
import matplotlib.pyplot as pyp
from scipy.constants import c,h,m_e,pi # h, m_e, c are in SI.

comp = lambda x: 10**12 * h/(m_e*c) * (1-np.cos(x))
# 10**12 converts [m] in [pm]
x = np.linspace(0,pi,1000) # np.cos has radiant argument
pyp.plot(x*180./pi,comp(x)) # x-axis in degree
pyp.xlabel(r"Angle [$^\mathbf{o}$]",weight="bold")
pyp.ylabel(r"$\mathbf{\lambda_2 - \lambda_1}$ [pm]",weight="bold")
pyp.title("Compton Scattering Formula")
pyp.savefig("ComptonScatter.eps")
pyp.show()

3. — Absorption and photon emission. A γ is absorbed and let the electron of an atom
to change in an excited state. When the electron return to its ground state, the atom
emits a photon with a characteristic atomic wavelength. This is also called “Fluorescence
radiation”. If the photon energy is enough to unbound the electron from the orbits of the
atom, the photoelectric effect occurs.
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Series 2 – Messengers from the Universe

July 29, 2019

Ex. 1 — Particles from the universe
The flux of the cosmic rays is characterized by a power law due their acceleration mechanisms
in their sources: dφ/dE ∝ E−γ . The spectrum index γ is not a constant value for the full
energy spectrum. Strong debates are around its precise values and the meaning of its evolution,
especially for the energy range between E1 = 1018 eV and E2 = 1020 eV.

1. — Calculate the value of the A coefficient, so that the cumulative function of dN/dE is
normalized to 1 between E1 and E2.

2. — Once A is known, write a short python script that generates cosmic rays with a random
energy E, with E1 ≤ E ≤ E2, according to the flux power law: dN/dE = AE−γ .
Plot the obtained energy distribution, using spectrum indices 2 and 3. (Suggestion:
Use numpy.random to do the random sampling https://docs.scipy.org/doc/numpy/
reference/routines.random.html. In the reference, you will find different methods to
perform random extraction, find the one which is more suited for this case.)

3. — Studying the real distribution of the flux of the energy spectrum is still an ongoing
research. In the scientific article “Measurement of the energy of cosmic rays above 1018 eV
using the Pierre Auger Observatory” you can find a function that describes the spectrum
between E1 and E2:

J(E;E < Eankle) = BE−γ1 (1)

J(E;E > Eankle) =
E−γ2

1 + exp
(

log10 E−log10 E1/2

log10Wc

). (2)

Find the values of the needed parameters in the paper. Then generate the random energy
of cosmic rays with a distribution in agreement with this function, between E1 and E2.
(Suggestion: Use the previous piece of code and re-weight the events with a weight w
according to the function above. Be careful, you need to impose the continuity at Eankle

to find B). Finally, the flux is often multiplied by E2.5 or E3 to observe better its features;
use one of these factors to plot your results. Choose the best y-axis to plot the simulated
energy distribution.

Answer (Ex. 1) —
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Figure 1: Event simulation with energy distribution with spectral indices γ = 2 (in blue) and γ = 3 (in red).

1. — To normalize,

1 = A

∫ E2

E1

E−γdE = A
E−γ+1

1− γ

∣∣∣∣∣

E2

E1

= A
E−γ+1

2 − E−γ+1
1

1− γ

⇒ A =
1− γ

E−γ+1
2 − E−γ+1

1

, (3)

where γ 6= 1.

2. — Given a generic cumulative number of events N =
∫ E
E1

dE,

N = A

∫ E

E1

E−γdE = A
E−γ+1 − E−γ+1

1

1− γ =
E−γ+1 − E−γ+1

1

E−γ+1
2 − E−γ+1

1

⇒ E =
[
E−γ+1

1 +N ·
(
E−γ+1

2 − E−γ+1
1

)] 1
1−γ

. (4)

In Figure 1 the plots of the following code are shown.

import numpy as np
import matplotlib.pyplot as pyp

# Set parameters
R = np.random.random((int)(1e5))
E1,E2 = 1e18, 1e20
# Convenient function to show in the plot
E = lambda g: (E1**(1.-g) + R*(E2**(1.-g)-E1**(1.-g)))**(1./(1.-g))
# Common kwd
kwd = dict(bins=100,log=True,facecolor=’none’,linewidth=2,histtype=’step’)
# Histograms
N1,bins,h1 = pyp.hist(E(2.),color=’b’,label=r"$\gamma=2$",**kwd)
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N1,bins,h2 = pyp.hist(E(3.),color=’r’,label=r"$\gamma=3$",**kwd)
pyp.xscale(’log’)
pyp.xlabel(r"$\mathbf{\log_{10}(E/\mathrm{eV})}$")
pyp.ylabel(r"$\mathbf{\mathrm{d}N/\mathrm{d}E}$")
pyp.legend()
pyp.savefig("simSpectrumIndices.eps")
pyp.show()

3. — The smooth function provided by the article from the Pierre Auger collaboration is

J(E;E < Eankle) ∝ E−γ1 (5)

J(E;E > Eankle) ∝ E−γ2

1 + exp
(

log10 E−log10 E1/2

log10Wc

), (6)

where the parameters are the following:
Parameter Value
γ1 = γ(E < Eankle) 3.26
γ2 = γ(E > Eankle) 2.55
log10(Eankle/eV) 18.6
log10(E1/2/eV) 19.61
log10(Wc/eV) 0.16

The idea is to use a simulation from the previous question and re-weight the events with
a weight w according to this function. For the continuity,

A · E−γ1
ankle =

E−γ2
ankle

1 + exp
(

log10 Eankle−log10 E1/2

log10Wc

) (7)

⇒ A =
Eγ1−γ2ankle

1 + exp
(

log10 Eankle−log10 E1/2

log10Wc

), (8)

therefore

w =





Eγ1−γ2ankle

1 + exp
(

log10 Eankle−log10 E1/2

log10Wc

) · E−γ1 (E < Eankle)

E−γ2

1 + exp
(

log10 E−log10 E1/2

log10Wc

) (E > Eankle)

. (9)

Since the simulated events have already a distribution (E−γ), to properly apply a weight
the shape must be flattened by a factor Eγ . Rescaling the y-axis can be considered a
weight too when the histogram is produced. Thus, following the suggestion in the article
of rescaling by E3, the final weight will be w · E3+γ .
Starting from the case with γ = 2, the check on the resulting distribution is performed
and shown in Figure 2 with the following code. The code is a continuation of the one
shown in the previous question

G, g1, g2, Eank, lgE12, lgWc = 2., 3.26, 2.55, 10**18.6, 19.61, 0.16
fsmooth = lambda e: (1+np.exp((np.log10(e)-lgE12)/lgWc))
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Figure 2: Energy distribution .

A = Eank**(g1-g2)/fsmooth(Eank)
Eg2 = E(2.)
# Weights for a generic scale
weights = lambda scale: np.where(Eg2>Eank, Eg2**(scale+G-g2)/fsmooth(Eg2),

A*Eg2**(scale+G-g1))
# Scale chosen is 3., as said before
N3,bins,h3 = pyp.hist(Eg2,weights=weights(3.),**kwd)
pyp.xscale(’log’)
pyp.ylim(ymin=4e48)
pyp.xlabel(r"$\mathbf{\log_{10}(E/\mathrm{eV})}$")
pyp.ylabel(r"$\mathbf{E^3\!\cdot\,\mathrm{d}N/\mathrm{d}E}$")
pyp.savefig("simSpectrumRealistic.eps")
pyp.show()

Ex. 2 — Light from a star
What is the color of the sun? Looking at it, the answer seems “slightly yellow”, but this is due
the atmospheric filtering of the light1. Since it emits the entire visible region of the electromag-
netic spectrum, its color should be “white”. However, it does not emit all the electromagnetic
frequencies with the same luminosity.
The spectral radiance of a star can be described as a “black-boby radiation”. Therefore, the
spectral brightness Iν of the sun, and of a star in general, follows the Plancks’s law for a spectral
radiance of a black body. Moreover, its bolometric luminosity is, from the Stefan-Boltzmann
law, L� = 4πσR2

�T
4
eff , where Teff is the effective temperature that characterize the sun2.

1. — Find Teff of the sun. Then, plot writing a short python code its black-body distribution
as a function of the wavelength and extract through the code the wavelength and frequency

1The literature terminology “yellow dwarf star” used to classify stars as the sun is a misnomer.
2The temperature of a star is not well defined: it is a gradient from the nucleus to the surface and even

in the surface fluctuates quite a lot. Teff define a conventional temperature based on the black body radiance
distribution. Whenever the temperature of a star is cited, it is a reference to this characteristic temperature,
which is ∝ 4

√
L�.
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of its maximum spectral emission.
The spectrum of an astrophysical object is very important because its change (“redshift”)
gives hints about the movement of the object.

2. — At the frequency of the emission peak of the sun, give the spectral radiance as calculated
from the Planck’s law; calculate then the flux and the luminosity detected on Earth,
considering r� as the average distance earth-sun. (Suggestion: consider the sun a disc-
source perpendicular to the detector, i. e. the earth. . . )

3. — A star equivalent to the sun is moving with β in a direction with angle θ from the
observer.
a) Estimate the possible βs with which the object is moving with an apparent speed ≥ c.

(Suggestion: it will be useful to remind the trigonometric identities sinα cosβ +
cosα sinβ = sin(α+ β) and cos 45 = sin 45. . . )

b) With the minimum possible β, calculate the ranges of θs and the apparent brightness
for the peak frequency of the sun.

c) Still with the minimum β but with θ = 180o (i. e. it is going far away from the earth),
how much is the redshift?

d) With the previous redshift and assuming a constant Hubble expansion rate H0, how
far is the star from the earth? And with a double redshift?

Answer (Ex. 2) —

1. — From the Stefan-Boltzmann law L� = 4πσR2
�T

4
eff , Teff = 5772 K. Knowing the effective

temperature of the sun and the Planck’s law

B (λ, T ) =
2hc2

λ5
· 1

e
hc

λkBTeff − 1
(10)

yield the black body distribution in Figure 3. The maximum of this distribution is easily
calculated as λpeek ' 0.502 µm that correspond to a frequency of νpeek ' 597 THz. The
code used (in Python) is the following:

import numpy as np
import matplotlib.pyplot as pyp
from scipy.constants import h,c,k

Teff = 5772 # in K
l = np.linspace(0.005,3,1000000) # in um
L = l*10**(-6) # in m
B = ((2*h*c**2)/L**5 ) * 1/(np.e**((h*c)/(L*k*Teff))-1) # in W*sr^{-1}*m^{-3}

# Peak
Bpeak = np.max(B)
lpeak = l[np.where(B==Bpeak)[0][0]] # in um
fpeak = c*10**(-6)/lpeak # in THz
print Bpeak, lpeak, fpeak

# Plot
pyp.plot(l,B)
pyp.xlabel(r"$\lambda$ [$\mathbf{\lambda}$m]",weight=’bold’)
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Figure 3: Black body spectral radiance distribution for the sun.

pyp.ylabel(r"$\mathbf{B(\nu,T)}$ "+\
r"[W$\mathbf{\cdot}$sr$\mathbf{^{-1}\cdot}$m$\mathbf{^{-3}}$]",
weight=’bold’)

pyp.title("Planck’s law ditribution",weight=’bold’)
pyp.savefig("plancksBB.eps")
pyp.show()

2. — From the Planck’s law as a function of the frequency

Iν = B (ν, T ) =
2hν3

c2
· 1

e
hν

kBTeff − 1
, (11)

the spectral radiance is

Iν ' 2.2 · 10−8 W · sr−1 ·m−2 ·Hz−1. (12)

The angular radius of the Sun viewed from the Earth is

θ� = arcsin

(
R�
r�

)
≈ 4.7 · 10−3 rad. (13)

The sun is a disc-source perpendicular to the detector (i. e. the earth), therefore the flux
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is calculated from the integral

Sν =

∫

sun

Iν cos θdθdΩ =

= Iν

∫ 2π

φ=0

∫ θ�

θ=0

cos θ sin θdθdφ =

= 2πIν

∫ θ�

θ=0

sin θ cos θdθ =

= 2πIν

∫ sin θ�

0

xdx =

= πIν sin2 θ�, (14)

where dΩ = sin θdθdφ and the substitutions x = sin θ and dx = cos θdθ are used. Since
θ� � 1,

Sν ≈ πIνθ2
� ≈ 1.52 · 10−12 W ·m−2 ·Hz−1 =

= 152 TJy. (15)

Finally, the luminosity is

Lν = 4πr2
�Sν ≈ 4.2 · 1011 W ·Hz−1 (16)

3. —
a) The apparent βapp is yielded by the formula

βapp =
β sin θ

1− β cos θ
, (17)

where θ is the angle between the observer and the movement of the star. From the
inequality βapp ≥ 1:

1− β cos θ ≤ β sin θ

⇒ 1 ≤ β(sin θ + cos θ)

⇒ 1

β
√

2
≤ (sin θ cos 45 + cos θ sin 45)

⇒ 0 ≤ 1

β
√

2
≤ sin(θ + 45) ≤ 1 (18)

⇒ 1√
2
≤ β ≤ 1. (19)

b) From Equation (19), the minimum possible β is βmin = 1/
√

2. From Equation (18),
θmin = 45o. For this angle, the only possible, the doppler factor is

δ =

√
1− β2

1− β cos θ
=
√

2. (20)
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Therefore, since Iν/ν3 is an invariant,

Iem
ν

ν3
em

=
Iobs
ν

ν3
obs

=
Iobs
ν

(δνem)
3

⇒ Iobs
ν = δ3Iem

ν ' 6, 2 · 10−8 W · sr−1 ·m−2 ·Hz−1. (21)

c) With θ = 180o, the redshift is simply

z =

√
1 + β

1− β − 1 = 1.41. (22)

d) “Same redshift”, means same β. Therefore

βc = H0d (23)

⇒ d =
βc

H0
' 3127 Mpc. (24)

If the redshift is double, the β will be

z =

√
1 + β

1− β − 1

⇒ β =
(z + 1)

2 − 1

(z + 1)
2

+ 1
' 0.87, (25)

therefore

d =
βc

H0
' 3847 Mpc. (26)
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Series 3 – Interaction Lengths, Apparent Velocity
and Luminosity

July 29, 2019

Ex. 1 — Interaction Length

1. — The analytic expression for the photoelectric absorption by the interstellar gas is:

σ(E) = 2× 10−22cm2

(
E

keV

)− 8
3

, (1)

where E is the photon energy.
Calculate the cross-section and mean-free-path for a photon in the interstellar medium
with energies of 20 eV and 20 keV. Assume that the interstellar medium in our Galaxy
contains an average density of 1 hydrogen atom per cubic centimeter.

2. — The intergalactic medium (the gas between galaxies) is ionized and has a mean electron
density of about 2·10−7 cm−3. Calculate the mean-free-path of photons that do Thompson
scattering in the intergalactic medium. The cross section for Thompson scattering is
σT = (8π/3)r20 , where r0 = e2/(mec

2) = 2.82 · 10−13 cm is the classical electron radius.
Express your result in megaparsecs.

3. —The size of the visible universe is about the speed of light times the time since the
Big Bang, 13.8 Gyrs. Can we expect to see x-ray sources at cosmologically interesting
distances (i.e. at a significant fraction of the size of the visible universe)?

Answer (Ex. 1) —

1. — The mean free path for a photon through a medium of hydrogen atoms with density
of particles per unit volume ρ and cross-section σ is l = 1/(ρ · σ). Plugging in numbers
yields:

l =
1

(1.0(H atom)cm−3)(2 · 1022cm2)(e/(keV))−8/3
= (2)

= (5.0 · 1021cm)

(
E

keV

)− 8
3

= (1.6 · 103pc)
(

E

keV

)− 8
3

(3)

1



The cross-sections and mean-free-paths are:

E = 20 eV : σ = 6.8 · 10−18cm2, l = 0.047 pc (4)

E = 20 keV : σ = 6.8 · 10−26cm2, l = 4.7 · 106 pc (5)

2. — The Thompson scattering cross-section is σT = 6.66 · 10−25 cm2 and using the average
electron density, the mean-free-path is:

l = 1/(ρ · σ) = 7.5 · 1030cm = 2.4 · 106Mpc. (6)

3. — The radius of the visible universe, i.e., the distance a photon can travel since the Big
Bang, is about the speed of light multiplied by the time since the Big Bang. Since the
age of the Universe is 13.8 Gyrs, the radius is 4231 Mpc (including the expansion of the
universe would increase this by a factor of about 3). Thus, the intergalactic medium is
transparent to X-rays.

Ex. 2 — Superluminar motion

1. — (1 for the speed, 1 for the distance)
Figure 1 below shows the jets emitted by GRS 1915+105, a Galactic X-ray binary source,
during 1994. From the image, estimate the average speed at which each bright spot
appears to be moving from the core (indicated by a cross). The source is distant 40000
ly. To which distance does the angular size of 1 arcsec correspond to?

Figure 1: Example of apparent superluminar motion of the jet of GRS 1915+105.

2. — Let’s now understand which is the reason that explains the apparent velocity to be
larger then the velocity of the light. Consider an AGN, which is moving from position

2



Figure 2

A to B in the sky in time δt, at an angle θ with respect to the line of sight of a distant
observer, as shown in Figure 2. Assume that the AGN emits a first bunch of photons at
time t0 = 0 in A. At what time the photons will reach the observer?

3. — The AGN emits a second flare when located at position B. Assuming that the angle θ
is small, which is the time at which this second flare will reach the observer?

4. — The observer sees the source moving along H. Which is the perceived velocity vapp of
the radio jets from the observer?

5. — Determine the angle θmax at which this velocity is maximal and determine its maximum
value vmax,app. In which conditions the radio jets will appear as having superluminar
motion?

6. —Write a small python script to plot the apparent velocity as a function of the orientation
angle and the luminosity doppler boosting factor for the case n = 3, in polar coordinates.
Choose at least 5 different values of β at which to plot the curves.

Answer (Ex. 2) —

1. — See solution on jupyter notebook
2. — Since the photon travels at the speed of light, it will take a time tAO to cover distance

D:

tAO =
D

c
. (7)

3. — The AGN moves along L. It will reach position B after a time δt and there will emit the
second bunch of photons. Since the angle θ is assumed to be small, we can approximate
the distance between B and the observer as dBO ' D − vδt cosθ, hence the photons will
reach the observer at time:

tBO = δt+
D − vδt cosθ

c
. (8)

4. — The observer perceives the source moving along H, hence covering the distance d =

3



vδt sinθ, perpendicular to its sight of line with an apparent velocity:

vapp =
vδt sinθ

tBO − tAO
=

v sinθ

1− v
c cosθ

. (9)

5. — The angle that maximizes the apparent jet velocity can be calculated by setting the
derivative of vapp(θ) with respect to the angle θ to zero.

v cosθ − v2

c
cos2θ − v2

c
sin2θ = 0, (10)

so that θmax is:

θmax = arccos
(v
c

)
. (11)

For v close to the speed of light, this angle is very small. Introducing γ we can obtain an
expression for the maximal observed jet velocity by inserting Eq. 11 into Eq. 9:

vmax,app = γv. (12)

If the jets have velocities close to c, this becomes:

vmax,app = γc, (13)

and this explains how the observed jets velocity can be larger than c even though the true
jet speed does not exceed c.

6. — See solution on jupyter notebook
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Series 4 – Shock waves and Fermi acceleration
mechanism

July 29, 2019

Ex. 1 — Fermi acceleration mechanism
Fermi acceleration mechanisms. In the Fermi acceleration mechanism, charged particles increase
considerably their energies crossing back and forth many times the border of a magnetic cloud
(second-order Fermi mechanism) or of a shock wave (first-order Fermi mechanism). Compute
the number of crossings that a particle must do in each of the mechanisms to have a ratio
Efin/Ein = 10, assuming:

1. — realistic values of β = 10−4 for the magnetic cloud and β = 10−2 for the shock wave;
2. — β = 10−4 for both acceleration mechanisms.
3. — For a CR a realistic mean free path is L ∼ 0.1 pc. Be Φ the pitch angle of the particle

at the i−th scattering. Which is the mean time between collisions? Which would be the
time needed to reach Ef for the magnetic cloud from point 1?

Answer (Ex. 1) —

1. —

∆E1 =
Ef,1

E0
(1)

∆E2 =
Ef,2

Ef,1
=

Ef,2

E0 ·∆E1
→ Ef,2

E0
= ∆E1 ·∆E2 = (∆E)2 (2)

∆En =
Ef,2

E0 ·∆E1... ·∆En
→ Ef,n

E0
= (∆E)n (3)

For the magnetic cloud (β = 10−4) the number of cycles is 1.7 ·108 and for the shock wave
(β = 10−2) is 1.7 · 102.

2. — If using β = 10−4 for the shock wave, the number of cycles becomes 1.7 · 104.
3. — Define L as mean free path and Φ as pitch angle, the time between collisions is

tcoll =∼ L/(c cosΦ), which can be averaged to 2L/c. Considering L ∼ 0.1 pc and number
of cycles calculated above for the magnetic cloud (β = 10−4), the necessary time should
be around 109 years.

1



Ex. 2 — SNR explosions and shock waves
In SNR explosion shock waves can accelerate particles. A supernova of mass M = 10L (ML =
2 · 1033 g) has an ejected mass with typical kinetic energy K ∼ 1051 erg.

1. — How long does it take to extinguish the accelerator (time of free expansion of the
ejecta)?

Answer (Ex. 2) —

1. — The speed of the shock front can be obtained as:

v =

√
2K

M
∼ 3200 km/s. (4)

The shock gets extinguished when the mass of the ejecta reach a density equal to the
average interstellar density ρIG ∼ 1 p/cm3 = 1.6 · 10−24 g/cm3:

ρSN = M/Volume = M/(4/3πR3) = ρIG → Volume→ R ∼ 1.4 · 1019 cm ∼ 5pc. (5)

So the time can be calculated as:

Tacc = R/v ∼ 1000 years (6)

Note that these are only typical order of magnitude numbers.

Ex. 3 — Boron-To-Carbon measurements

1. — Write an approximated Boron production rate due to the Carbon spallation process in
the Galaxy, given its production cross-section σC→B . Given that the Boron production
rate is related to the Boron density by the lifetime of Boron in the Galaxy τ , express the
ratio NB/NC .

2. — Fit the AMS measurements for the Boron-to-Carbon ratio available in the carbon-
boron-AMS02.dat file. (Suggestion: use the log scales on the axes to perform the fit.)

3. — Which is the average interstellar gas number density? Express it in terms of the Boron
average lifetime in the Galaxy.

Answer (Ex. 3) —

1. — Since we know the partial cross-section of spallation processes we can use the secondary-
to-primary abundance ratios to infer the gas column density traversed by the average
cosmic ray. Let us perform a simply estimate of the Boron-to-Carbon ratio. Boron is
chiefly produced by Carbon and Oxygen with approximately conserved kinetic energy per
nucleon, so we can relate the Boron source production rate, to the differential density of
Carbon by this equation:

QB ∼ nH ·NC · β · c · σC→B (7)

where, nH denotes the average interstellar gas number density, NC is the Carbon density,
β is the Carbon velocity and σC→B is the spallation cross-section of Carbon into Boron.
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The Boron density is related to the production rate by the lifetime of Boron in the Galaxy,
τ , before it escapes or losses its energy by spallation QB = NB/τ . So we can write:

NB

NC
∼ nH · β · c · σC→B · τ (8)

2. — See Jupiter notebook
3. — The values from the are a = 0.44, and b = -0.34. Above about 10 GeV/nucleon the

experimental data can be fitted to a test function, therefore the Boron-to-Carbon ratio
can be expressed as:

NB

NC
= 0.4

( E
GeV

)−0.3
(9)

For energies above 10 GeV/nucleon we can approximate β ∼ 1, which leads, using the
values of the cross-section, to a life time gas density of:

nH · τ ∼ 1014
( E
GeV

)−0.3
s cm−3 (10)
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