Neutrinos and Nuclear Non-Proliferation

August 12, 2019

Bryce Littlejohn
Illinois Institute of Technology

Trinity: Alamagordo, NM, USA, 1945 22kT TNT, ²³⁹Pu implosion device

Trinity: Alamagordo, New Mexico, USA

Hiroshima and Nagasaki, Japan, 1945

Remembrance Hall, Nagasaki

- Over 100,000 men, women and children lost their lives in the first nuclear attack at Hiroshima
- Over 50,000 lost in the subsequent Nagasaki attack

Genbaku (A-Bomb) Dome, Hiroshima Peace Memorial Park

Hiroshima Peace Memorial Park

Hiroshima and Nagasaki, Japan, 1945

Remembrance Hall, Nagasaki

- Over 100,000 men, women and children lost their lives in the first nuclear attack at Hiroshima
 - 235U gun design: I5kT
- Over 50,000 lost in the subsequent Nagasaki attack
 - 239Pu implosion device similar to Trinity: 20kT

Genbaku (A-Bomb) Dome, Hiroshima Peace Memorial Park

Hiroshima Peace Memorial Park

Tsar Bomba: Severny Island, Russia, 1961

- 50 MT multi-stage thermonuclear (fusion) device
- I0x more energetic than all explosives used in World War II
 - 1500x more powerful than Hiroshima/Nagasaki a-bombs
- Total destruction radius (red) compared to Paris (yellow)

Punggye-ri, North Korea, 2017

- Underground explosion estimated at 70-280 kT
 - At least >4x more powerful than Hiroshima device
 - Thought to be a fusion-boosted fission device
- Most recent of 6
 North Korean
 device tests
 - Some successfully tested devices are rocket-mountable

Nuclear Stockpiles

 We know that a single nuclear weapon is capable of causing a humanitarian catastrophe

The Point of All That

Nuclear non-proliferation is more than an academic exercise

Lives have been lost or changed forever from use of nuclear

weapons; lives currently are at risk.

 Fundamental science permits functional nuclear weapons

 Can science also help to control/monitor them?

Hibakusha: Hiroshima and Nagasaki survivors

Peace Bell, Hiroshima Peace Park

Nuclear Explosion Concepts

Neutron-induced fission chain reactions

- Absolutely essential ingredients: ²³⁵U or ²³⁹Pu
 - Nearby neutron likely to cause fission and release > I neutron as a product
- These isotopes aren't found in enriched form in nature

Nuclear Control

- To control nuclear weapons, control/catalog ²³⁵U and ²³⁹Pu
- Control/monitor reactor operation = ²³⁹Pu control/monitoring
 - ALL reactors make ²³⁹Pu; some better than others

Reactor Antineutrino Production

- Reactor \overline{V}_e : made in beta-decay of ²³⁹Pu, ²³⁵U fission products
 - Each isotope: different branches, so different neutrino energies (slightly)

Reactor Antineutrino Detection

Detect inverse beta decay with liquid or solid scintillator, PMTs

IBD e+ is direct proxy for antineutrino energy

Daya Bay Monte Carlo Data

Reactor Power Monitoring

- Fissions make both neutrinos AND energy
 - More power made = more neutrinos released
- An IBD-based ex-situ reactor power monitor
 - Achieved already in numerous reactor experiments up to >km distances

Reactor Power Monitoring

- Fissions make both neutrinos AND energy
 - More power made = more neutrinos released
- An IBD-based ex-situ reactor power monitor
 - Know power without any in-core instruments (good for sodium reactors)
 - Discover reactor or monitor operational status very far away (50+ km)
 - None have been explicitly implemented as monitoring sub-systems

Rate-Based ²³⁹Pu Monitoring

- We know ²³⁹Pu makes fewer neutrinos than ²³⁵U
 - Change in IBD/day is a direct measure of kg of ²³⁹Pu bred into fuel
 - Numerous IBD experiments have seen reduction in IBD/day over fuel cycle
 - Drawback: degeneracy between power and ²³⁹Pu content

Energy-Based ²³⁹Pu Monitoring

- We know ²³⁹Pu makes lower energy neutrinos than ²³⁵U
 - IBD prompt energy is a direct measure of kg of ²³⁹Pu bred into fuel
 - Daya Bay has observed this change in spectrum
 - Power (IBD rate) and ²³⁹Pu (IBD energy) can be independently monitored

QUESTIONS?

