
Statistical Methods in 
Neutrino Physics

Tom Junk
Fermilab

12th International Neutrino Summer School
August 7, 2019

August 7, 2019 T. Junk Stat. Methods 1



• Particle Data Group reviews on Probability and Statistics. 
http://pdg.lbl.gov

• Frederick James, “Statistical Methods in Experimental
Physics”, 2nd edition, World Scientific, 2006

• Louis Lyons, “Statistics for Nuclear and Particle Physicists”
Cambridge U. Press, 1989

• Glen Cowan, “Statistical Data Analysis”  Oxford Science 
Publishing, 1998

• Roger Barlow, “Statistics, A guide to the Use of Statistical
Methods in the Physical Sciences”, (Manchester Physics Series) 2008.

• “Markov Chain Monte Carlo In Practice”, W.R. Gilks,  S. Richardson,
and D. Spiegelhalter eds.

• Bob Cousins, “Why Isn’t Every Physicist a Bayesian”  Am. J. Phys 63, 398 (1995).

Recommended Reading Material
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Meetings on Statistics in HEP (with real Statisticians!)

The Phystat-Nu Series.  Each has a link to suggested reading material for physicsists
and for statisticians
https://indico.cern.ch/event/735431/ CERN, 2019
https://indico.fnal.gov/event/11906/ Fermilab, 2016
https://indico.ipmu.jp/indico/event/82/ At the IPMU Institute in Kashiwa, Japan, 2016

Phystat Series – tends to be collider-centric but still useful

http://indico.cern.ch/conferenceDisplay.py?confId=107747 Phystat 2011
http://www.physics.ox.ac.uk/phystat05/ Phystat 2005
http://www-conf.slac.stanford.edu/phystat2003/ Phystat 2013
http://conferences.fnal.gov/cl2k/

See Alex Himmel's talk at INSS 2017
https://indico.fnal.gov/event/13429/other-view?view=standard

And K. Cranmer’s lectures at HCPSS 2013  http://indico.cern.ch/event/226365/
I am also very impressed with the quality and thoroughness of Wikipedia articles
on general statistical matters.

https://indico.fnal.gov/event/11906/
https://indico.fnal.gov/event/11906/
https://indico.ipmu.jp/indico/event/82/
http://indico.cern.ch/conferenceDisplay.py?confId=107747
http://www.physics.ox.ac.uk/phystat05/
http://www-conf.slac.stanford.edu/phystat2003/
http://conferences.fnal.gov/cl2k/
https://indico.fnal.gov/event/13429/other-view?view=standard


The Scientific Method
• Devise a hypothesis to test

• Motivated by prior observations, or possibly not
• Not already excluded
• "Interesting" to the community or to everyone

• Some hypotheses/measurements have technical value as inputs to
subsequent high-profile measurements

• Testable – it must predict something that is different from alternative hypotheses
• "Null" vs. "Test" hypotheses  (names not always applicable).  You need at least two

hypotheses to make a test
• Precision measurements select from a continuous spectrum of hypotheses
• A delicate balancing act – theorists work very hard to devise good hypotheses

• Design an experiment to test the hypothesis
• Optimize the sensitivity at this stage

• Construct and operate the experiment
• Analysis: confront hypotheses with data.

• Karl Popper:  You can only rule out hypotheses, never prove one true.
• Estimate and include systematic uncertainties
• Report results!
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"Classical Inference"



Probability
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• Testable hypotheses make predictions of observable data
• You need a full model of your experiment, including

• The physics model being tested
• Experimental apparatus

• Beam flux and spectrum
• Interaction cross sections (differential)
• Detector response
• Reconstruction and event selection

• Systematic uncertainties on all of the above

• Data are randomly drawn from true parent distributions which are not
perfectly known.

Predictions of a model take the form of frequentist probabilities
p(data|model).  These are defined to be the fraction of experimental outcomes
observing data in a large number of identical repeated experimental trials, assuming
that the model is true.



The Binomial Distribution
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Given n particles entering the detector, and each one has a probability p
of interacting, then the distribution of the number of interactions k if the experiment
is repeated many times is binomial.

The observed number of interactions is k (the "data").  
n may also be observed (e.g. incoming charged particles in LArIAT or ProtoDUNE), 
but in neutrino experiments, it too is predicted from a flux and
an exposure (running time and detector mass)

Binom 𝑘 𝑛, 𝑝 = 𝑛
𝑘 𝑝+ 1 − 𝑝 ./+

where
𝑛
𝑘 =

𝑛!
𝑘! 𝑛 − 𝑘 !

Some properties:
𝑘 = 𝑝𝑛

𝜎 𝑘 = Var(𝑘) = 𝑛𝑝(1 − 𝑝)
The sum of two binomally-distributed numbers with the same p is binomially distributed 
with that p.   You can add your data together in a histogram.
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The Poisson Distribution

lim
.→9

Binom 𝑘 𝑛, 𝑝 = 𝑟
𝑛 = Poiss 𝑘 𝑟 =

𝑟+𝑒/>

𝑘!

In general, we start with lots of neutrinos, and very few interact with the detector.
Binomial probabilities are difficult to work with – 1013! is a big, big number.

r is the rate.    

𝑘 = 𝑟
Var(k)=r

𝜎 𝑘 = Var(𝑘) = 𝑟

?
+@A

9

Poiss 𝑘 𝑟 = 1 ∀ 𝑟

C
>@A

9
Poiss 𝑘 𝑟 𝑑𝑟 = 1 ∀ 𝑘

Commonly used to model radioactive
decay event distributions.  They're really
binomial, but the number of atoms is usually
so big it is a great approximation
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Composition of Poisson and Binomial Distributions

Say we have a rate of 𝜎L events, but our selection efficiency
is 𝜀

€ 

Poiss(k |εσL) = Binom(k |N,ε)Poiss(N |σL)
N= 0

∞

∑

A more general rule:  The law of conditional probability

P(A and B) = P(A|B)P(B) = P(B|A)P(A)    more on this one later

And in general, 

€ 

P(A) = P(A |B)P(B)
B
∑

August 7, 2019
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Joint Probability of Two Poisson Distributed Numbers

Example -- two bins of a histogram
Or -- Monday’s data and Tuesday’s data

€ 

Poiss(x |µ)×Poiss(y |ν ) = Poiss(x + y |µ + ν) ×Binom x | x + y, µ
µ + ν

$ 

% 
& 

' 

( 
) 

The sum of two Poisson-distributed numbers is Poisson-
distributed with the sum of the means ("Raikov's Theorem")

€ 

Poiss(k |µ)Poiss(n − k |ν)
k= 0

n

∑ = Poiss(n |µ + ν )

Application:  You can rebin a histogram and the contents of each
bin will still be Poisson distributed (just with different means)

Question:  How about the difference of Poisson-
distributed variables?

August 7, 2019
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The Gaussian (or "Normal") Distribution

Gauss 𝑥 𝜇, 𝜎 =
1
2𝜋𝜎L

𝑒/
M/N O

PO

Mean:   𝑥 = 𝜇
Width:   Var(x) = 𝜎2

Sum of Two Independent Gaussian Distributed
Numbers is Gaussian with the sum of the means
and the sum in quadrature of the widths

€ 

Gauss z,µ + ν, σ x
2 +σ y

2( ) = Gauss(x,µ,σ x )Gauss(z − x,ν,σ y )dx
−∞

∞

∫

A difference of independent Gaussian-distributed numbers is also
Gaussian distributed (widths still add in quadrature)
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Areas under the Normal Distribution Curve

By Dan Kernler - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36506025
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The Central Limit Theorem
The sum of many small, uncorrelated random numbers
is asymptotically Gaussian distributed -- and gets more so
as you add more random numbers in.  Independent of
the distributions of the random numbers (as long as they stay
small).

August 7, 2019
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13

Poisson for large r is Approximately Gaussian of width

If, in an experiment
all we have is a 
measurement n, we
often use that to
estimate r.

We then draw  𝑘 ("root n")
error bars on the data.
This is just a convention,
and can be misleading.
We still recommend you
do it, however.

𝜎 𝑘 = 𝑟

r=0.5 r=4.0

r=1.0

r=2.0

r=8.0

r=16.0
August 7, 2019
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Why Put Error Bars on the Data?

• To identify the data to people who 
are used to seeing it this way

• To give people an idea of how many 
data counts are in a bin
when they are scaled (esp. on a 
logarithmic plot).

• So you don’t have to explain
yourself when you do something
different (better)

The true value of r is
usually unknown

But: 𝒌 ≠ 𝒓

“Il n'est pas certain que
tout soit incertain.

(Translation: It is not certain 
that everything is uncertain.)”
― Blaise Pascal, Pascal's Pensees

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO11066
August 7, 2019
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Aside:  Errors on the Data?  (answer: no)
Standard to make MC histograms with no errors:  Data points

with error bars:

But we are not uncertain of nobs!   We are only uncertain
about how to interpret our observations; we know how to count.

ATLAS Collab., arXiv:1207.7214
August 7, 2019

Collider example.  Neutrino papers often put prediction uncertainties in
separate tables.
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Sometimes another convention is adopted for showing error bars on the data

There are
several options.

Need to explain
which one is
chosen

August 7, 2019

T2K Collaboration, Phys.Rev.Lett. 121 (2018) no.17, 171802
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Not all  Distributions are Gaussian

Track impact
parameter
distribution
for example

Multiple 
scattering --
core: Gaussian;
rare large scatters;
heavy flavor, 
nuclear interactions,
decays (taus in 
this example) “All models are false.  Some 

models are useful.”

Core is approximately
Gaussian

August 7, 2019
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Statistics is the inverse of Probability

Models with 
parameters

Predicted data 
distributions

Probability:

Statistics:
Sample of data drawn 

from an unknown true 
distribution

Tests of models and 
parameter values

Guess which is easier!  Inverse reasoning is usually ill-posed.
We seek to quantify the range of possible models consistent with data.

Back to probability:   Characterization of performance of statistical methods.

Usually you need to calculate experiment sensitivity before you run the experiment.

I have not read
this book but I
like the cover.
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Statistical Uncertainty on an Average of Independent
Random Numbers Drawn from the Same Gaussian Distribution

N measurements, xi ± s are to be averaged

The square root of the variance  of the sum is 

so the standard deviation of the distribution of 
averages is

Useful buzzword:  “IID” = “Independent, identically distributed

is an unbiased estimator
of the mean μ

€ 

x = 1
N

xi
i=1

N

∑

€ 

σ x =
σ
N

Worth 
Remembering
this formula!

August 7, 2019
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Estimating the Width of a Distribution

It’s the square Root of the Mean Square (RMS) deviation from the true mean

€ 

σ est (µtrue known) =  
(xi −µtrue )

2

i
∑

N

BUT:  The true mean is usually not known, and we use the same data to estimate
the mean as to estimate the width.  One degree of freedom is used up by the
extraction of the mean.  

This narrows the distribution of deviations from the average, as the average is
closer to the data events than the true mean may be.  An unbiased estimator
of the width is:

€ 

σ est (µtrue unknown) =  
(xi − x )2

i
∑

N −1

n.b. Physics notation
of RMS is RMS of the
differences from
the mean, not just
raw RMS

August 7, 2019
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How Uncertainties get Used
• Measurements are inputs to other measurements -- to compute

uncertainty on final answer need to know uncertainty on parts.

• Measurements are averaged or otherwise combined -- weights
are given by uncertainties

• Analyses need to be optimized -- shoot for the lowest uncertainty

• Collaboration picks to publish one of several competing analyses
-- decide based on sensitivity

• Laboratories/Funding agencies need to know how long to run
an experiment or even whether to run.  PINGU and P5.

Statistical uncertainty: scales with data (1/sqrt(L).  Systematic uncertanty
often does too, but many components stay constant -- limits to
sensitivity. 

August 7, 2019
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The Difference between "Error" and "Uncertainty"

Particle physicsists tend to use these words interchangeably, but they really mean
different things.

• Error = (measured – true):    Usually the error is unknown
• Uncertainty:  A prior or posterior distribution of the error, often represented as

just one or two numbers.
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Examples from the
front of the PDG

August 7, 2019



Propagation of Uncertainties

Covariance:

If

then

In general, if 

This can even
vanish!
(anticorrelation)

u

v
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Zero Covariance Does NOT Imply Independent!

http://en.wikipedia.org/wiki/Correlation_and_dependence

ρxy =σ xy
2 (σ xσ y )
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c2 Fitting and Goodness of Fit
For n independent Gaussian-distributed random numbers, the
probability of an outcome (for known si and µi ) is given by

If we are interested in fitting a distribution (we have a model
for the µi in each bin with some fit parameters) we can maximize
p or equivalently minimize

For fixed µi this c2 has n degrees of freedom (DOF)

si includes
stat. and syst.
errors

August 7, 2019
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Counting Degrees of Freedom
has n DOF for fixed µi and si

If the µi are predicted by a model with free parameters
(e.g. a straight line), and c2 is minimized over all values
of the free parameters, then

DOF = n - #free parameters in fit.

Example:  Straight-line least-squares fit: 
DOF = npoints - 2   (slope and intercept float)

With one constraint: intercept = 0,
6 data points, DOF = ?

Approximate! Not always!
(*cough*)

August 7, 2019
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MC Statistics and “Broken” Bins

• Automated tools cannot tell if the background expectation
is really zero or just a downward MC fluctuation.
• Real background estimations are sums of predictions with

very different weights in each MC event (or data event)
• Rebinning or just collecting the last few bins together often helps.

• Advice:  Make your own visible underflow and overflow bins
(do not rely on ROOT’s underflow/overflow bins -- they are usually

not plotted.   Tools may ignore u/o bins

NDOF=?

August 7, 2019
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"Partially" Broken Bins?  How Can we Tell the Bins are Broken?

There many not be enough
information in this histogram
to determine shape.  

One bin may be right answer.

Orange contribution was 
estimated from a data 
sideband – hard just to run
some more MC to fix the
problem!
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The χ2 Distribution

Plot from Wikipedia:
“k” = number of degrees of Freedom

PDF

Cumuliative
Distribution

Mean:  k

August 7, 2019

Assumes errors are Gaussian,
the model is true, and 
and uncertainties are correct.
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c2 and Goodness of Fit
• Gaussian-distributed random numbers cluster around µi

~68% within 1s.  95% within 2s.  Very few
outside 3 sigma.

TMath::Prob(Double_t Chisquare,Int_t NDOF)

Gives the chance of seeing the value of
Chisquared or bigger given NDOF.

This is a p-value (more on these later)

August 7, 2019
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A Rule of Thumb Concerning χ2

Average contribution to c2 per DOF is 1.   c2/DOF
converges to 1 for large n  for distributions compared 

with the true model with correct uncertainties and 
Gaussian-distributed errors.

From the PDG
Statistics Review

August 7, 2019

n.b. You can make
c2/DOF as small as you
like by overbinning Poisson
data.

No such thing as an unbinned
c2/DOF test (though some
have tried)
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An Example of a Dodgy Fit

Error bars are
either correlated
or overestimated

A naive least-squares
fit will give uncertainties
that are unreliable for
the slope and intercept

Chisquared (not shown)
per DOF is tiny
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Another Questionable Fit

Labels removed.   Model is naive (or error bars do not cover known
reasons for deviation from the model).  It was probably good enough for the purpose though.

Poor Chisquare
Fit Uncertainties 
way too small
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What ROOT Does By Default

Default is Neyman's
chisquared

Error = sqrt(nobs)
in each bin.

Ignores bins with
nobs = 0.

Use the "L" option
in TH1::Fit()
to use the Poisson
likelihood instead
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A Typical Situation:  Data are both too wide and too 
narrow for the Gaussian model

Solution – try fitting a sum of two Gaussians.  If the widths are similar, the uncertainties
will be highly correlated.

ALICE Collab,
arXiv:1402.4476
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A Reasonable Fit
The fact that
the most
discrepant
point is the
one on the
end might
raise a question
but the 
fluctuations
look real.
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Other Goodness-of-Fit Tests

One you can do in your head (sort of)

The run test.  Count how many
consecutive data points are below
the prediction, or how many
are above the prediction in a row.

Residuals of mismodeled distributions
often have a "wavy" structure to them.

Even if the 𝜒2 is good, the run test
may show a problem

S. Dytman

http://npc.fnal.gov/wp-content/uploads/2018/11/fnal-dytman-nov18.pdf

There is no substitute for looking critically at your data!  And your MC!
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The Kolmogorov-Smirnov GOF Test
χ2 Doesn’t tell you everything you may want to know about distributions that
have modeling problems.

Ideally, it is a test of two unbinned distributions to see if they come from the same
parent distribution.

Procedure:  
• Compute normalized, 

cumulative distributions
of the two 
unbinned sets of events.
Cumulative distributions 

are “stairstep” functions
• Find the maximum 
distance D between the
two cumulative distributions

called the “KS Distance”

http://www.physics.csbsju.edu/stats/KS-test.html
August 7, 2019
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• p-value is given by this pair of equations

You can also compute the p-value by running 
pseudoexperiments and finding the
distribution of the KS distance.
Distributions are usually binned 
though – analytic formula no longer applies. 
Run pseudoexperiments instead.

See ROOT’s
TH1::KolmogorovTest()
which computes both D and p.  It is asymmetric  
in its treatment of histograms.  

The Kolmogorov-Smirnov GOF Test

€ 

z = D n1n2
n1 + n2

p(z) = 2 (−1) j−1e−2 j
2z 2

j=1

∞

∑

See also F. James, 
Statistical Methods in 
Elementary Particle Physics, 2nd Ed.

August 7, 2019
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Including Correlated Uncertainties in c2

Example with 
• Two measurements a1± u1± c1 and a2 ± u2 ± c2 of one parameter x
• Uncorrelated errors u1 and u2
• Correlated errors c1 and c2 (same source)

If there are several sources of correlated error ci
p then the 

off-diagonal terms become

August 7, 2019
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1 standard-deviation error from c2(xbest±s0)-c2(xbest)=1

Can be extended to many measurements of the same parameter x.

Combining Precision Measurements with BLUE

Procedure:  Find the value of x which minimizes c2

This is a maximum likelihood fit with symmetric, Gaussian
uncertainties.

Equivalent to a weighted average:

€ 

xbest = wiai
i
∑ with

€ 

wi
i
∑ =1

August 7, 2019
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More General Likelihood Fits

𝜃⃗ “Parameters of Interest”  oscillation parameters, cross-section, b.r.
𝜈 “Nuisance Parameters”   Exposure, acceptance, 

detector resolution.

Strategy -- find the values of 𝜃⃗ and 𝜈 which maximize L

Uncertainty on parameters:  Find the contours in 𝜃⃗ such that

ln(L) = ln(Lmax) - s2/2,   

to quote s-standard-deviantion intervals.  Maximize L over  𝜈
separately for each value of 𝜃⃗.  Buzzword:  “Profiling”

𝐿 = 𝑃 data|𝜃⃗, 𝜈

August 7, 2019
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Be Sure to Normalize L

𝜃⃗ “Parameters of Interest”  oscillation parameters, cross-section, b.r.
𝜈 “Nuisance Parameters”   Exposure, acceptance, 

detector resolution.

𝐿 = 𝑃 data|𝜃⃗, 𝜈

∑Possible_data 𝐿 data|𝜃⃗, 𝜈 =1

for all values of 𝜃⃗ and 𝜈

Or your answers will be wrong.

August 7, 2019
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More General Likelihood Fits
Advantages:
• “Approximately unbiased”
• Usually close to optimal
• Invariant under transformation of parameters.  Fit for a mass

or mass2 doesn’t matter.

Unbinned likelihood fits are quite popular.  Just need 

Warnings:
• Need to estimate what the bias is, if any.
• Monte Carlo Pseudoexperiment approach:  generate lots of random
fake data samples with known true values of the parameters sought,
fit them, and see if the averages differ from the inputs.

• More subtle -- the uncertainties could be biased.  
-- run pseudoexperiments and histogram the “pulls” (fit-input)/error -- should

get a Gaussian centered on zero with unit width, or there’s bias.
• Handling of systematic uncertainties on nuisance parameters by maximization

can give misleadingly small uncertainties -- need to study L for other values
than just the maximum (L can be bimodal)

𝐿 = 𝑃 data|𝜃⃗, 𝜈

August 7, 2019
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Alex Himmel at Phystat-Nu 2019
https://indico.cern.ch/event/735431/contributions/3137791/attachments/1783219/2902091/2019-01-23-lbl-stats.pdf

https://indico.cern.ch/event/735431/contributions/3137791/attachments/1783219/2902091/2019-01-23-lbl-stats.pdf


August 7, 2019 T. Junk Stat. Methods 47

Sensitivity Projections
• Need to evaluate many experiment design choices quickly
• Usually involve fits to the Asimov dataset

• Asimov data = median expected outcome, no Poisson fluctuation.  From
Isaac Asimov's short story Franchise in which one "typical" voter cast a ballot
for everyone in the galaxy.

Units of sensitivity are usually
𝜎 = ∆𝜒L using Gaussian approximations for
the distribution of possible outcomes (68%
are within ±1𝜎 of central)

DUNE CDR sensitivity – TDR is similar
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The “Neyman Construction” of Frequentist Confidence Intervals

Essentially a
“calibration curve”

• Pick an observable x
somehow related to the 
parameter q you’d like
to measure

• Figure out what 
distribution of observed
x would be for each value
of q possible.

• Draw bands containing
68% (or 95% or whatever)
of the outcomes

• Invert the relationship using
the prescription on this page.

A pathology: can get an
empty interval.  But the error
rate has to be the specified one.
Imagine publishing that all branching ratios
between 0 and 1 are excluded at 95% CL.Proper Coverage is Guaranteed!
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A Special Case of Frequentist Confidence Intervals: Feldman-Cousins

G. Feldman and R. Cousins,
“A Unified approach to the 
classical statistical 
analysis of small signals”
Phys.Rev.D57:3873-3889,1998. 
arXiv:physics/9711021

Also explained in Kendall & Stuart
in the 1940's.

Each horizontal band contains 68% of
the expected outcomes (for 68% CL
intervals)

But Neyman doesn’t prescribe which 68% 
of the outcomes you need to take!

Take lowest x values: get lower limits.
Take highest x values: get upper limits.

Feldman & Cousins's Recommendation:  
Sort outcomes by the likelihood ratio.

R = L(x|q)/L(x|qbest)

For all x, R=1 for some q.  And R≤1 always.

Picks 1-sided or 2-sided intervals --
no flip-flopping between limits and 2-sided
intervals.

No empty intervals!

FC Confidence Belt
for a Gaussian with mean µ>0
T. Karbach
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A 1D FC Belt Example with Bounds on Both Sides

A top-quark polarization correlation measurement.
Branching ratios, sin2𝜃, and other variables have similar constraints
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Two-Dimensional FC Constructions

F&C, Phys.Rev. D57 (1998) 3873-3889.
NOvA Collab. https://arxiv.org/abs/1906.04907

See A. Sousa CHEP 2018 for modern computational details
https://indico.cern.ch/event/587955/contributions/2938131/attachments/1685595/2710354/Sousa_SciDac4_NOvA_HPC_CHEP2018.pdf

Three-dimensional space of parameters of interest is much harder.

https://indico.cern.ch/event/587955/contributions/2938131/attachments/1685595/2710354/Sousa_SciDac4_NOvA_HPC_CHEP2018.pdf
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A. Sousa, CHEP 2018

2018 analysis:  10 histograms to fit, 2 runs of ~20M CPU hours each at NERSC
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Two complaints
1)  Elimination may be erroneous (Type-II error) which
can create a false discovery (Type-I error)

2)  How do we know all possibilities have been 
considered?  

Nature may be outside the chosen model space 
entirely.

If we know a priori somehow that the truth is in our 
model space then this is okay.

Some model spaces, such as properties of exotic 
particles, may consist entirely of untrue models
and we would like to rule out the entire space if 
we can.    Otherwise we may just "discover" the
part of parameter space we cannot test.

Putting the null hypothesis in the model space does 
not ensure completeness.

The incompleteness in the model space
is usually in the nuisance parameter portion.
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A Measurement of R(b) using
a double-tagging method
Eur.Phys.J.C8:217-239,1999

We had two distributions
we couldn't model perfectly.

We thought for sure it was our
imperfect detector modeling.

Tweaking parameters one way
fixed one distribution and made
the other one worse, and vice
versa.

We ended up taking a systematic
uncertainty on detector modeling
due to this.

We later discovered that the
decay multiplicity of B hadrons
measured by ARGUS and put in
Pythia was ~1 track off the world
average.

It took LEP-2 data with WW
decays (no B's) to discover this.
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K. McFarland, Phystat-nu 2019 summary talk
https://indico.cern.ch/event/735431/contributions/3137831/attachments/1785482/2906728/Neutrino_Summary_PHYSTATnu_2019_final.pdf

https://indico.cern.ch/event/735431/contributions/3137831/attachments/1785482/2906728/Neutrino_Summary_PHYSTATnu_2019_final.pdf
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Systematic Uncertainties
Roger Barlow's fine advice: https://arxiv.org/abs/hep-ex/0207026

Penalty for diligence:
• Someone who has one watch always knows what time it is.  Someone

with two watches is never quite sure.

Paraphrasing Kyle Cranmer and Costas Andreopoulos, systematic uncertainties 
come in three categories:

• The GOOD
• Those that are constrained with auxiliary measurements

• The BAD
• (educated) Guesses

• The UGLY
• Forgotten, omitted, dismissed, or unknown

Sometimes a GOOD systematic can have BAD or UGLY components, e.g. extrapolating
from a control sample into a signal sample requires some knowledge or guesswork.

https://arxiv.org/abs/hep-ex/0207026
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Reasons for Another Kind of Probability
• So far, we’ve been (mostly) using the notion that probability is 

the limit of a fraction of trials that pass a certain criterion to total trials.

• Systematic uncertainties involve many harder issues.  Experimentalists
spend much of their time evaluating and reducing the effects of 
systematic uncertainty.

• We also want more from our interpretations -- we want to be able to make
decisions about what to do next.

• Which HEP project to fund next?
• Which theories to work on?
• Which analysis topics within an experiment are likely

to be fruitful?

These are all different kinds of bets that we are forced to
make as scientists.  They are fraught with uncertainty,
subjectivity, and prejudice.

Non-scientists confront uncertainty and the need to make decisions too!
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Bayes’ Theorem
Law of Joint Probability:

Events A and B interpreted to mean “data” and “hypothesis”

𝜃 = set of model parameters

A frequentist would say: Models have no “probability”.  One model’s true,
others are false.  We just can’t  tell which ones (maybe the space of considered
models does not contain a true one).

Better language: 𝑝 𝜃|data describes our belief in the different models 
parameterized by 𝜃

𝑝 𝜃|data =
𝐿(data|𝜃)𝜋(𝜃)

∫ 𝐿(data|𝜃c)𝜋 𝜃c 𝑑𝜃c
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Bayes’ Theorem
is called the “posterior probability” of
the model parameters

is called the “prior density” of the model parameters

The Bayesian approach tells us how our existing knowledge before we do the 
experiment is “updated” by having run the experiment.

This is a natural way to aggregate knowledge -- each experiment updates
what we know from prior experiments (or subjective prejudice or some
things which are obviously true, like physical region bounds).

Be sure not to aggregate the same information multiple times!  (groupthink)

We make decisions and bets based on all of our knowledge and prejudices

“Every animal, even a frequentist statistician, is an informal
Bayesian.”   See R. Cousins, “Why Isn’t Every Physicist a Bayesian”,
Am. J. P., Volume 63, Issue 5, pp. 398-410

𝑝 𝜃|data

𝜋(𝜃)
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How I remember Bayes’s Theorem

Posterior “PDF”
(“Credibility”)

“Likelihood Function”
(“Bayesian Update”)

“Prior belief
distribution”

Normalize this so that

for the observed data
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Bayesian Upper Limits
Including uncertainties on nuisance parameters 𝝂

where p(𝝂) encodes our prior belief in the values of
the uncertain parameters.  Usually Gaussian centered on
the best estimate and with a width given by the systematic.
The integral is high-dimensional.  Markov Chain MC integration is
quite useful!  The Metropolis-Hastings Algorithm and variants are very useful.

Typically p(r) is constant
Other options possible.
See the PDG stats reveiw
Sensitivity to priors a
concern.

Limits:
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Observed
Limit

5% of integral

𝐿c data 𝑟 = C𝐿(data|𝑟, 𝜈)π(𝜈)𝑑𝜈

0.95 =
∫A
>lim 𝐿c data|𝑟 𝜋 𝑟 𝑑𝑟

∫A
9𝐿c data|𝑟 𝜋 𝑟 𝑑𝑟
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Bayesian Cross Section (or rate) Extraction
Same handling of
nuisance parameters
as for limits

€ 

r = rmax−(rmax −rlow )
+(rhigh−rmax )

Usually:  shortest interval containing 68% 
of the posterior

(other choices possible).  Use the word 
“credibility” in place of “confidence”

If the 68% CL interval does not contain zero, then
the posterior at the top and bottom are equal 
in magnitude.
The interval can also break up into smaller pieces! 

Also easily generalizable to many parameters of interest.

The measured
cross section
and its uncertainty

𝐿c data 𝑟 = C𝐿(data|𝑟, 𝜈)π(𝜈)𝑑𝜈

0.68 =
∫>low
>high 𝐿c data|𝑟 𝜋 𝑟 𝑑𝑟

∫A
9𝐿c data|𝑟 𝜋 𝑟 𝑑𝑟



TRJ HCPSS Statistics Lect. 4 63

Systematic Uncertainties
Encoded as priors on the nuisance parameters p(𝝂).

Can be quite contentious -- injection of theory
uncertainties and results from other experiments --
how much do we trust them?

Do not inject the same information twice.

Some uncertainties have statistical interpretations --
can be included in L as additional data.  Others are
purely about belief.  Theory errors often do not have
statistical interpretations.
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Coping with Systematic Uncertainty

• “Profile:”
• Maximize L over possible values of nuisance parameters

include prior belief densities as part of the c2 function
(usually Gaussian constraints)

• “Marginalize:”
• Integrate L over possible values of nuisance parameters

(weighted by their prior belief functions -- Gaussian,
gamma, others...)

• Consistent Bayesian interpretation of uncertainty on nuisance
parameters

• Aside:  MC “statistical” uncertainties are systematic uncertainties 
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Parameter Estimation – Marginalize or Profile?
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If Pred = 10-6
-3, and obs=15, then the likelihood would have one maximum,

but it would have a corner.  MINUIT may quote inappropriate uncertainties as the
second derivative isn’t well defined.

The corner can be smoothed out – See                                      But I know of no way
R. Barlow, http://arxiv.org/abs/physics/0406120,                    to get rid of the double-peak
http://arxiv.org/abs/physics/0401042                                        Nor should there be a way --
http://arxiv.org/abs/physics/0306138                                        it can be a real effect.  See the LEP2 TGC measurements
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Even Bayesians have to be a little Frequentist

• A hard-core Bayesian would say that the results of an
experiment should depend only on the data that are observed,
and not on other possible data that were not observed.

• But we still want the sensitivity estimated!  An experiment
can get a strong upper limit not because it was well designed,
but because it was lucky.

How to optimize an analysis before data are observed?

So -- run Monte Carlo simulated experiments and compute
a Frequentist distribution of possible limits.  Take the median--
metric independent and less pulled by tails.



Cross-Checks in Data Subsamples
Do not improve discovery sensitivity  (see Barlow's advice)

Give confidence that the model(s) are predicting the data adequately.

See an excess of events in a specific energy range?  Look in all the corners of the
detector!

See something weird in the data – does it persist in other  kinematic bins, run periods, etc.

Be careful of trigger bias – you will only see the events you seek!

A warning – splitting data up into small pieces enhances the look-elsewhere effect.
You will see discrepancies just due to randomness if you look in enough places.

"All data are infinitely unlikely"   -- R. McPherson

A hazard:  post-hoc analysis placing cuts around special events.  The probability of seeing
one is smaller and smaller the tighter the cuts around the observed event get.

T. Kuffner:  Using the data to select the model to test invalidates classical inference.
August 7, 2019 67T. Junk Stat. Methods
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Alex Himmel, INSS Statistical Methods Lecture 2017
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A Solution:  Take More Data if You Can

T2K Collaboration, Phys.Rev. D91 (2015) no.7, 072010

Open square points fail fiducial volume cut.

"We observe no unexpected clustering and combined KS tests for uniformity in
r2 and z yields a p-value of 0.6"
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Hypothesis Testing
• Simplest case:  Deciding between two hypotheses.

Typically called the null hypothesis H0 and the 
test hypothesis H1

• Can’t we be even simpler and just test one hypothesis H0?
• Data are random -- if we don’t have another

explanation of the data, we’d be forced to call it a
random fluctuation.  Is this enough?

• H0 may be broadly right but the predictions slightly flawed
• Look at enough distributions and for sure you’ll spot one

that’s mismodeled.  A second hypothesis provides guidance
of where to look.

• Popper:  You can only prove models wrong, never
prove one right.

• Proving one hypothesis wrong
doesn’t mean the proposed alternative must be right.

All models are wrong;
some are useful.
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Frequentist Hypothesis Testing:
Test Statistics and p-values

Step 1:  Devise a quantity that depends on the observed
data that ranks outcomes as being more signal-like or 
more background-like.

Called a test statistic.  Simplest case:  Searching for a new
particle by counting events passing a selection requirement.

Expect b events in H0, s+b in H1.

The event count nobs is a good test statistic. 

Step 2:  Predict the distributions of the test statistic separately
assuming:
H0 is true
H1 is true

(Two distributions.  More on this later)
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Frequentist Hypothesis Testing:
Test Statistics and p-values

Step 3:  Run the experiment,
get observed value of test
statistic.

Step 4:  Compute p-value

p(n³nobs|H0)

Example:
H0: b = µ = 6

nobs = 10
p-value = 0.0839

A p-value is not the “probability H0 is true”
But many
often say that.
Especially the popular media!
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So what is the p-Value?

A p-value is not the “probability H0 is true”   -- this isn’t even a Frequentist thing to
say anyway.  If we have a large ensemble of repeated experiments, it is not true
that H0 is true in some fraction of them!

p-values are uniformly distributed assuming that the hypothesis they are testing is
true (and outcomes are not too discretized).

Why not ask the question – what’s the chance N=Nobs (no inequality).  Each outcome
may be vanishingly improbable.  What’s the chance of getting exactly 10,000 events when
a mean of 10,000 are expected?  (it’s small).  How about 1 if 1 is expected?

If p < pcrit then we can make a statement.  Say pcrit=0.05.  If we find p < pcrit, then we
can exclude the hypothesis under test at the 95% CL.

What does the 95% CL mean?  It’s a statement of the error rate.

In no more than 5% of repeated experiments, a false exclusion of a 
hypothesis is expected to happen if exclusions are quoted at the 95% CL.
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Type I and Type II Error Rates
(statistics jargon, getting more common in HEP)

• Type I Error rate:   The probability of excluding the Null Hypothesis H0 when H0 is true.
Also known as the False Discovery Rate.

• Type II Error rate:  The probability of excluding the Test Hypothesis H1 when H1 is true.
The False Exclusion Rate.

Typically a desired false discovery rate is chosen – this is the value of pcrit, also known
as α.  Then if p < α, we can claim evidence or discovery, at the significance level given
by α.

We discover new phenomena by ruling out the SM explanation of the data!
-- the Popperian way to do it – we can only prove hypotheses to be false.

In some cases neither H0 nor H1 has any a priori prejudice for it, like the neutrino
mass hierarchy.  I’m not sure which gets called Type I and Type II in that case; arbitrary.
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Common Standards of Evidence
Physicists like to talk about how many “sigma” a result
corresponds to and generally have less feel for p-values.

The number of “sigma” is called a “z-value” or "z-score" and is just
a translation of a p-value using the integral of one
tail of a Gaussian

Double_t zvalue = - TMath::NormQuantile(Double_t pvalue)

1sÞ15.9%

Tip: most physicists talk about p-values now but hardly
use the term z-value – we use the word “significance” instead (try not to conflate with 
"sensitivity"  which is expected significance)

Folklore:
95% CL -- good

for exclusion
3s: “evidence”
5s: “observation”
Some argue for
a more subjective
scale.

€ 

pvalue =
1− erf zvalue / 2( )( )

2
z-value (s) p-value

1.0 0.159

2.0 0.0228

3.0 0.00135

4.0 3.17E-5

5.0 2.87E-7

One-
Sided
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Why 5 Sigma for Discovery?
From what I hear:  It was proposed in the 1970’s when the technology
of the day was bubble chambers.

Meant to account for the Look Elsewhere Effect.  A physicist estimated how many
histograms would be looked at, and wanted to keep the error rate low.

Also too many 2σ and 3σ effects “go away” when more data are collected.   Psychology
literature with p<0.05 criteria – lots of irreproducible results.

Some historical recollections:
http://www.huffingtonpost.com/victor-stenger/higgs-and-significiance_b_1649808.html

And a modern take on the matter from L. Lyons: https://arxiv.org/abs/1310.1284

Not all estimations of systematic uncertainties are perfect, and extrapolations
from typical 1σ variations performed by analyzers out to 5σ leave room for doubt.

Some effects go away when additional uncertainties are considered.  Example –
CDF Run I High-ET jets.  Not quark compositeness, but the effect could be folded
into the PDFs.

If a signal is truly present, and data keep coming in, the expected 
significance quickly grows (s/sqrt(b) grows as sqrt(integerated luminosity)).

http://www.huffingtonpost.com/victor-stenger/higgs-and-significiance_b_1649808.html
https://arxiv.org/abs/1310.1284
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A Cautionary Tale – The Pentaquark “Discoveries”

CLAS Collab., Phys.Rev.Lett. 91 (2003) 252001

Significance = 5.2 ± 0.6 σ

Watch out for the
background function
parameterization!

Five times the data sample
CLAS Collab., Phys.Rev.Lett. 100 (2008) 052001

August 7, 2019



August 7, 2019 T. Junk Stat. Methods 79

Coverage
A statistical method is said to cover if the Type-I error rate is no more than the 
claimed error rate α.  Exclusions of test hypotheses (Type-II errors) also must
cover – the error rate cannot be larger than stated.

95% CL limits should not be wrong more than 5% of the time if a true signal is present.

If the results are wrong a smaller fraction of the time, the method overcovers.
If the results are wrong a larger fraction of the time, the method undercovers.

Undercoverage is a serious accusation – it has a similar impact as saying that the
quoted uncertainties on a result are too small (overselling the ability of an experiment
to distinguish hypotheses).

Note:  Coverage is a property of a method, not of an individual result.  In some cases we
may even know that a result is in the unlucky 5% of outcomes, but that individual outcome
does not have a coverage property – only the set of possible outcomes.

The word coverage comes from confidence intervals – are they big enough to contain
the true value of a parameter being measured and what fraction of the time they do.
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p-values and -2lnQ

p-value for testing H1 = p(-2lnQ ≥ -2lnQobs|H1)
The green-shaded area to the right.

If it is small, reject H1
The “or-equal-to” has similar effect here too.

This one is called CLs+b (again, not my choice
of words).  p-values are not confidence levels.

Note:  If we quote the CL as the p-value, we 
will always exclude H1, just at different CL’s
each time.

Lucky outcome:  exclude at 97% CL
Do we exclude at the 50% CL?

No!  Set α once and for all (say 0.05). Then 
coverage is defined.

H0
H1

From which distribution was
the data drawn?  We know
what the data are; we don’t
know what the distribution is!
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More Sensitivity or Less Sensitivity
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signal p-value very small.  
Signal ruled out.
Possible to exclude both H0 and H1 (-2lnQ=0).
Possible to get outcomes that make you 
pause to reconsider the modeling.  Say -2lnQ<-100
or -2lnQ>+100

Can make no statement about
the signal regardless of experimental
outcome.

Unlikely (or implausible) outcomes
are still possible of course!

The usual sensitivity gauge:  Median Expected p0 if the alternate hypothesis is true

n.b. average p-values tend to be pulled by long tails in the p-value distrib.



August 7, 2019 T. Junk Stat. Methods 82

Sensitivity is important!

Null results are
valid scientific
results, but the test must
be sensitive for them to be
meaningful.

Quote an upper limit!

Some fields of study
(not HEP) have addressed
this by publishing only
positive results with p<0.05.
Many of these results are
not reproducible.
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Searching for Anything and Everything

An example from astronomy:

J. Rafael Martinez-Galarza, Harvard & Smithsonian
Finding Needles in the Haystack: Outlier Detection in Astronomical Datasets
Video at: https://events.fnal.gov/colloquium/events/event/martinez-galarza-colloq-2019/

A collider example:

CDF Collab., "Global Search for New Physics"  https://arxiv.org/abs/0809.3781
Phys.Rev.D79:011101,2009

Search for outliers and you will find them!  With statistically limited samples of data,
you will find them even if there is no new physics to be discovered.

https://events.fnal.gov/colloquium/events/event/martinez-galarza-colloq-2019/
https://arxiv.org/abs/0809.3781
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https://xkcd.com/882/Also called "Cherry Picking" and "p-Hacking"
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Look-Elsewhere
Multiple Independent Tests, each with a specified Type-1 Error Rate (false signal),
ought to produce Errors at the specified rate (or they aren’t powerful enough, or the
error rate can be claimed to be lower).

A single analysis can involve many multiple tests.  Classic example:  A bump-hunt on
a histogram.

Old-fashioned way to handle it (Bonferroni) – multiply p-value by the 
number of independent tests.

Better and just as easy:  Dunn-Šidák Correction

From Wikipeida.  Sometimes it isn't exactly clear what m is.
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Where is “Elsewhere?”
A collider collaboration is typically very large; >1000 Ph.D. students. 
DUNE has more than 1000 physicists, and there are many neutrino experiments.

Many ongoing analyses for new physics.  The chance of seeing a statistical fluctuation that
looks like new physics somewhere is large.  What is the LEE?

Do we have to correct our previously published p-values for a larger LEE when we add
new analyses to our portfolio?

How about the physicist who goes to the library and hand-picks all the largest excesses?
What is LEE then?

“Consensus” at the Banff 2010 Statistics Workshop:  LEE should correct only for those
models that are tested within a single published analysis.  Usually one paper covers one
analysis, but review papers summarizing many analyses do not have to put in additional
correction factors.

Caveat lector. 
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Look ElseWHENRunning averages
converge on
correct answer, but the
deviations in units of the
expected uncertainty have
a random walk in the 

logarithm of the number of
trials

The rk are IID numbers drawn
from a unit Gaussian.
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It’s possible to cherry-pick a dataset with a 
maximum deviation.  “Sampling to a foregone conclusion”

Stopping Rule:  In HEP, we (almost always!) take data until our money is gone.  We produce results for the major conferences 
along the way.  Some will coincidentally stop when the fluctuations are biggest.  We take the most recent/largest data sample
result and ignore
(or should!) results performed on smaller data sets.  p-values still distributed uniformly from 0 to 1.  A recipe for generating 
“effects that go away”
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Packaging Results for Future Use
• Particle physicists have been quite bad at this.    Mostly because our criteria

for success are so stringent.

• We spend huge amounts of money and effort building and running
experiments, and do a great job extracting results.

• But future physicists may discover a problem in the modeling (detector, 
physics in MC models, parameter values assumed, etc.)

• Re-performing an experiment can be prohibitive.

• Data presented in papers may be corrected using erroneous models.
• Sometimes one has to uncorrect and recorrect the old results
• happens all the time in mining old publications for inputs to parton distribution

functions
• Also happens in experimental neutrino data

• Uncorrected data may lack enough explanation of experimental details 
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Packaging Results for Future Use
Goals of documentation for future readers
• Should be able to reproduce your result
• Should be able to combine your result with other experiment's data

• The systematic uncertainties and correlations are always the hard part!
• Should be able to change model assumptions and arrive at new results.

• A systematic uncertainty that used to be BAD or UGLY may now be GOOD

Newer technologies help a lot:

http://hepdata.net

(hepdata.com is something else entirely)

Shared tools:  ROOFIT, ROOSTATS, RECAST

APS Journals allow submission of supplemental data.

DOE now requires a "data management plan" which includes standards for
preserving data in machine-readable format.  At the very least, data shown in published
plots must now be made machine readable.

http://hepdata.net/
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This is all great, but the real issue with preserving data is preserving analysis 
techniques and software, and handling of systematic uncertainties and correlations.

Calibrations must be applied to data (and MC), and sometimes ad hoc corrections
are needed to get the most out of a data set.

Future non-collaborators may get their hands on your data and make false discoveries,
or just discoveries that a particular part of the detector wasn't working part of the time.

In collider physics, each grad student may need and develop a tiny tweak to a calibration
that only he or she needs.  In neutrino physics, there are fewer analyses, and thus all
tweaks need to be mainstreamed. 

Packaging Results for Future Use
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Blind Analysis Procedures
Validate analysis as much as possible with simulation and control sample data

Collaboration sign-off on the analysis without looking at signal-region data

Data are “unblinded”  (or hidden offsets revealed)

A hard-line approach:  Collaboration must approve the unblinded result and submit for
publication, even if it contains mistakes that are obvious only when the signal region
data are investigated.

“Blind”, not “deaf and dumb”:  Allow review of possible mistakes.  But then we’re not
really blind, are we?

A practical concern:  One analysis group’s calibration sample is another’s signal sample!
They can accidentally unblind each other!
Do we need to keep people out of each others’ meetings?
Collaboration by-laws usually prohibit denying access to data or to analysis meetings.
Usually a “good-faith effort” 
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Summary
• Statistical treatment in HEP is getting better each year
• Powerful tools exist that cover many use cases. 
• Documentation is also quite good

• But:  Some calculations are prohibitively expensive when 
done "by the book" e.g. 5𝜎 sensitivities.

• Many methods you might come across are approximations
designed to get close to a result that is otherwise difficult to compute

• Knowing a priori the distribution of a test statistic helps avoid 
the need to throw lots of toy experiments.

• Often these approximations break down, and often in the cases 
we are most  interested in for neutrino physics.

• If something seems fishy, it probably is.
• Talk to experts if you need help!   Especially when starting your 

analysis, or designing your experiment.  Not right before your 
paper or thesis deadline!
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Extras
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xkcd.com

Stephen Hawking was famous for making bets he was happy to lose.
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Treatment of Asymmetric Uncertainties

These cases are pretty clear – the underlying parameter, the energy scale, has a
(Gaussian?  Your choice) distribution, while it has a nonlinear, possibly non-monotonic
impact on the model prediction.

The same parameter may have a linear, symmetrical impact on another model prediction,
and we will have to treat them as correlated in statistical analysis tools.

Treatment is ambiguous when little is known why the uncertainties are
asymmetric, or it is not clear how to extrapolate/interpolate them.

See R. Barlow, 
“Asymmetric Systematic Errors”, arXiv:physics/0306138
“Asymmetric Statistical Errors”, arXiv:physics/0406120
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Quadratic Impacts of Asymmetric Uncertainties

R. Barlow
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R. Barlow

Resulting Prior Distributions for alternative handling of Asymmetric Impacts
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Integrating over Systematic Uncertainties Helps
Constrain their Values with Data

Nuisance parameters: 𝝂
Parameter of Interest: r

Example:  suppose we have
a background rate prediction
that’s 50% (fractionally) uncertain
-- goes into p(𝝂).  But only a 
narrow range of background rates
contributes significantly to the
integral.  The kernel falls to zero rapidly
outside of that range.

Can make a posterior probability distribution for the background too --
narrow belief distribution.
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Asymmetric Uncertainties and Priors

Measurements, and even theoretical calculations, frequently are assigned
asymmetric uncertainties:

Value = 10+2
-1, or more extremely, 10+2

+2 (ouch).  When the uncertainties have the
same sign on both sides, it is worthwhile  to check and see why this is the case.

Example – we seek a bump in a mass distribution by counting
events in a small window around where the bump is sought.

The detector calibration has an energy uncertainty
(magnetic field or chamber alignment for tracks, 
or much larger effect, calorimeter energy scales for jets).

Shift the calibration scale up – predicted peak shifts out of the
window à downward shift in expected signal prediction.

Shift the calibration down – predicted peak shifts out of the other
side of the window à downward shift in expected signal prediction
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Hypothesis Testing

• p-values
• Coverage and Power
• Test Statistics and Optimization
• Incorporating Systematic Uncertainties
• Multiple Testing (“Look Elsewhere Effect”)

Thus the unfacts, did we possess them, are too imprecisely few to warrant our certitude...
J. Joyce, Finnegan’s Wake
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Another Bump That Went Away

Benefit of having four LEP experiments – at the very least, there’s more data.
This one was handled very well – cross checked carefully.

But, they shared models – Monte Carlo programs, and theoretical calculations.

A preliminary set of distributions shown at a LEPC presentation
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The Literature is Full of Bumps that Went Away

See Sheldon Stone, “Pathological Science”, hep-ph/0010295

My personal favorite is the “Split A2 resonance”

Text from Sheldon’s article:
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At Least ALEPH Explained What They Did

Dijet mass sum in e+e-®jjjj
ALEPH Collaboration, Z. Phys. C71, 179 (1996)

“the width of the bins is
designed to correspond to twice
the expected resolution ... and
their origin is deliberately chosen
to maximize the number of
events found in any two
consecutive bins”

LEP ended up running a little extra
at 130 GeV to collect more data
to test this hypothesis.
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A More Sophisticated Test Statistic
What if you have two or more
bins in your histogram?  Not
just a single counting experiment
any more.

Still want to rank outcomes as more
signal-like or less signal-like

Neyman-Pearson Lemma (1933):  The
likelihood ratio is the “uniformly
most powerful” test statistic

−2 lnQ ≡ LLR ≡ −2 ln L(data|H1,ν̂ )
L(data |H0, ˆ̂ν )
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Acts like a difference of Chisquareds in the Gaussian limit

€ 

−2lnQ→Δχ 2 = χ 2(data |H1) − χ
2(data |H0)

signal-like
outcomes

background-like
outcomes

yellow=p-value
for ruling out
H0. Green=
p-value for ruling
out H1

104
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What’s with     and     ?ν̂ ˆ̂ν

We parameterize our ignorance of the model predictions
with nuisance parameters.

A model with a lot of uncertainty is hard to rule out!

-- either many nuisance parameters, or one parameter
that has a big effect on its predictions and whose
value cannot be determined in other ways

maximizes L under  H1

maximizes L under  H0

−2 lnQ ≡ LLR ≡ −2 ln L(data|H1,ν̂ )
L(data |H0, ˆ̂ν )

#
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ν̂

ˆ̂ν
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What’s with     and      ?

A simple hypothesis is one for which the only free
parameters are parameters of interest.

A compound hypothesis is less specific.  It may have
parameters whose values we are not particularly
concerned about but which affects its predictions.
These are called nuisance parameters, labeled ν.

Example:  H0= Normal Mass Ordering.  H1= Inverted Mass Ordering. 
Both make predictions about what may be seen in an experiment.  
A nuisance parameter would be, for example, the beam flux.
It affects the predictions but in the end of the day we
are really concerned about H0 and H1.

ν̂ ˆ̂ν
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Example:  flat background, 30 bins, 10 bg/bin, Gaussian signal.
Run a pseudoexperiment (assuming s+b).

Fit to flat bg, Separate fit to flat bg + known signal shape.
The background rate is a nuisance parameter ν = b
Use fit signal and bg rates to calculate Q.
Fitting the signal is a separate option.

Fit twice!  Once assuming H0, once assuming H1

get ν̂

get ˆ̂ν
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p-values and -2lnQ

H0
H1

p-value for testing H0 = p(-2lnQ ≤ -2lnQobs|H0)
The yellow-shaded area to the right.

The “or-equal-to” is important here.  For highly
discrete distributions of possible outcomes –
say an experiment with a background rate of
0.01 events (99% of the time you observe zero
events, all the same outcome), then observing
0 events gives a p-value of 1 and not 0.01.

Shouldn’t make a discovery with 0 observed events,
no matter how small the background expectation!
(or we would run the LHC with just one bunch
crossing!).

This p-value is often called “1-CLb” in HEP.   (apologies for the
notation!  It’s historical)

CLb = p(-2lnQ ≥ -2lnQobs|H0)

Due to the “or equal to”’s (1-CLb) + CLb ≠ 1

For an experiment producing a single
count of events all choices of test 
statistic are equivalent.  *Usually*
more events = more signal-like.
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LLR Is not only used in Search Contexts – Precision Measurements too! 

Mixing rate –
more akin to a
cross section
measurement

Phys. Rev. Lett 97, 242003 (2006)
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Power
The Type-I Error Rate is α or less for a method that covers.  But I can cover with an analysis
that just gives a random outcome – in α of the cases, reject H0, and in 1-α of the cases,
do not reject H0.

But we would like to reject H1 when it is false.

The quoted Type-II error rate is usually given the symbol β (but some use 1-β).

For excluding models of new physics, we typically choose β=0.05, but sometimes 0.1 is used
(90% CL limits are quoted sometimes but not usually in HEP).

Classical two-hypothesis testing (not used much in HEP, but the LHC may lean towards it). 

H0 is the null hypothesis, and H1 is its “negative”.    We know a priori either H0 or H1 is true.
Rejecting H0 means accepting H1 and vice versa (n.b. not used much in HEP)

Example:   H0:  The data are described by SM backgrounds
H1:  There is a signal present of strength μ>0.  Can also be μ≠0 but most 

models of new physics add events.  (Some subtract events!  Or add
in some places and subtract in others!! )
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The Classical Two-Hypothesis Likelihood Ratio

Distinguishing between μ=0  (zero signal, SM, Null Hypothesis) and μ>0 (the test hypothesis)

qµ ≡ 2 ln
L(data|µ̂,ν̂ )
L(data |µ, ˆ̂ν )

"

#
$$

%
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''

€ 

ˆ µ is the best-fit value
of the signal rate.
Can be zero.   Your 
choice to allow it to
go negative.

qμ>0 always because H1
is a superset of H0 and 
therefore always fits
at least as well.

ATLAS performance projections, CERN-OPEN-2008-020

Larger q0 is more signal-like

Assumption Warning!
Signal rates scale with
a single parameter μ

μ is quadratically dependent on
coupling parameters (or worse.  More on this later).
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Wilks’s theorem
If the true value of the signal rate is given by μ, then qμ is distributed according
to a χ2 distribution with one degree of freedom.

Assumptions:  Underlying PDFs are Gaussian (this is never the case)

Systematic uncertainties also complicate matters.  If a systematic uncertainty
which has no a priori constraint can fake a signal, then there is no sensitivity
in the analysis. 

Example:  data = signal + background, single counting experiment.
If the background is completely unknown a priori, there is no way to make any
statement about the possibility of a signal.  So qμ=0 for all outcomes for all μ.

Poisson Discreteness also makes Wilkes’s theorem only approximate.

ATLAS performance projections, CERN-OPEN-2008-020
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The “Asimov” Approximation for Computing
Median Expected Sensitivity

We seek the median of some distribution, say a p-value or a limit (more on limits later).

• CPU constraints computing p-values, limits, and cross sections
• Need quite a few samples to get a reliable median. Usually many thousands.
• I use the uncertainty on the mean to guess the uncertainty on the median (not true

for very discrete or non-Gaussian distributions

• Often have to compute median expectations many times when optimizing an analysis

But:  The median of a distribution is the entry in the middle.

Let’s consider a simulated outcome where data = signal(pred)+background(pred),
and compute only one limit, p-value, or cross section, and call that the median
expectation.

Named after Isaac Asimov’s idea of holding elections by having just one voter, the “most typical one”
cast a single vote, in the short story Franchise.

σ avg = RMS / n−1
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A Case in which the Asimov Approximation Breaks Down

Usually it’s a very good approximation.  

Poisson discreteness can make it break down, however.  

Example:  signal(pred)=0.1 events, background(pred)=0.1 events.  

The median outcome is 0 events, not 0.2 events.  

In fact, 0.2 events is not a possible outcome of the experiment at all!

For an observed data count that’s not an integer, the Poisson probability must be
generalized a bit (seems to work okay):

€ 

pPoiss(n,r) =
rne−r

Γ(n +1)
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Some Comments on Fitting
• Fitting is an optimization step and is not needed for

correctly handling systematic uncertainties on nuisance
parameters.

More on systematics later

• Some advocate just using -2lnQ with fits as the final
step in quoting significance (Fisher, Rolke, Conrad, Lopez)

• But we do not know the distribution from which the data fit is 
drawn – could have gotten “lucky” or not.

• Fits can “fail” -- MINUIT can give strange answers
(often not MINUIT’s fault).  Good to explore distributions
of possible fits, not just the one found in the data.
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Incorporating Systematic Uncertainties into the p-Value
Two plausible options:

“Supremum p-value”

Choose ranges of nuisance parameters for which the
p-value is to be valid

Scan over space of nuisance parameters and calculate the 
p-value for each point in this space.

Take the largest (i.e., least significant, most “conservative”) p-value.
“Frequentist”  -- at least it’s not Bayesian.  Although the choice of the range
of nuisance parameter values to consider has the same pitfalls as  the arbitrary choice of
prior in a Bayesian calculation.

“Prior Predictive p-value”

When evaluating the distribution of the test statistic, vary the nuisance
parameters within their prior distributions.  “Cousins and Highland”

Resulting p-values are no longer fully frequentist but are a mixture of
Bayesian and Frequentist reasoning.    In fact, adding statistical errors
and systematic errors in quadrature is a mixture of Bayesian and
Frequentist reasoning.  But very popular.  Used in ttbar discovery, single top discovery.

p(x) = p(x |ν )p(ν )dν∫

T. Junk Stat. Methods 116
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Other Possible ways to Incorporate Systematic Uncertainties in P-Values

For a nice (lengthy) review, see

http://www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf

Confidence interval method
Use the data twice – once to calculate an
interval for a nuisance parameter, and a second time to compute supremum p-values

in that interval, and correct for the chance that the nuisance parameter is outside the
interval.

Hard to extend to cases with many (hundreds!) of nuisance parameters

Plug-in p-value
Find the best-fit values of the uncertain parameters and calculate
the tail probability assuming those values.

Double use of the data; ignores uncertainty in best-fit values of uncertain parameters.
Works best when the data strongly constrain the important uncertainties.
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Other Possible ways to Incorporate Systematic
Uncertainties in P-Values

Fiducial method – See Luc’s note.  I do not know of a use of this in a publication

Posterior Predictive p-value

Probability that a future observation will be at least as extreme as the current
observation assuming that the null hypothesis is true.

Advantages:  Uses measured constraints on nuisance parameters
Disadvantages:  Cannot use it to compute the sensitivity of an experiment you have

yet to run.

In fact, all methods that use the data to bound the nuisance parameters in the
pseudoexperiment ensemble generation cannot be used to compute the
a priori sensitivity of an experiment with systematic uncertainties.

Of course the sensitivity of an experiment is a function of the true values of
the nuisance parameters.



Look-Elsewhere Effect Comments
Generally, no LEE for limits.

BUT:  Taking the union of excluded parameter spaces is not well defined (breaks
coverage.  Points would have multiple chances to be excluded).

We overlay exclusion contours all the time.

LEE for p-values for sure.     Bayes Factor?  Question for Jim Berger

LEE depends on how many independent testable models.  More dimensionality
of parameters of interest not present on the null, the larger the LEE
Example:  LEP MSSM Higgs search – multiple small excesses.  Theorists found models to
predict them all simultaneously, did not compute LEE.

LEE when most of the model space has been excluded already?

Not all dimensions are created equally.  (delta msquared, sin^2 theta)
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“On-Off” Example
Select events with J/ψ(àll) π+π- candidates.  Lots of nonresonant background
whichis poorly understood a priori, but there’s a lot of it.

Typical strategy:
Fit the background
outside of the
signal peak,
and interpolate
the background
under the signal
to subtract
it off.

The ratio of events
in the sidebands
to the background
prediction under
the signal is called τ
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“Weak” Sideband Constraints

CDF’s Ωb observation
paper:

Phys.Rev. D80 (2009) 072003
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No Sideband Constraints?

Example:  Counting experiment, only have a priori predictions of expected
signal and background

All test statistics are equivalent to the event count – they serve to order outcomes
as more signal-like and less signal-like.  More events == more signal-like.

Classical example:  Ray Davis’s Solar Neutrino Deficit observation.  Comparing
data (neutrino interactions on a Chlorine detector at the Homestake mine) with a model
(John Bahcall’s Standard  Solar Model).  Calibrations of detection system were
exquisite.   But it lacked a standard candle.

How to incorporate systematic uncertainties?   Fewer options left.

Another example:  Before you run the experiment, you have to estimate
the sensitivity.  No sideband constraints yet (except from other experiments).
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“ABCD”  Methods
CDF’s W Cross Section Measurement

Isolation fraction=

Energy in a cone of 
radius 0.4 around
lepton candidate
not including the
lepton candidate /
Energy of lepton
candidateWant QCD contribution to

the “D” region where signal
is selected.

Assumes:  MET and ISO are uncorrelated sample by sample
Signal contribution to A,B, and C are small and subtractable

ABCD methods are
really just on-off
methods where
τ is measured using
data samples
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“ABCD”  Methods
Advantages
• Purely data based, good if you don’t trust the simulation
• Model assumptions are injected by hand and not in

a complicated Monte Carlo program (mostly)
• Model assumptions are intuitive

Disadvantages
• The lack of correlation between MET and ISO assumption may be false.

e.g., semileptonic B decays produce unisolated leptons and MET from the 
neutrinos.

• Even a two-component background can be correlated when the contributions aren’t
by themselves.

• Another way of saying that extrapolations are to be checked/assigned sufficient
uncertainty

• Works best when there are many events in regions A,B, and C.  Otherwise all the
problems of low stats in the “Off” sample in the On/Off problem reappear here.
Large numbers of events à Gaussian approximation to uncertainty in background in D

• Requires subtraction of signal from data in regions A, B, and C à introduces
model dependence

• Worse, the signal subtraction from the sidebands depends on the signal rate
being measured/tested.

à A small effect if s/b in the sidebands is small
à You can iterate the measurement and it will converge quickly
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The Sum of Uncorrelated 2D Distributions may be Correlated

x

y

Knowledge of one variable helps identify which sample the event came from
and thus helps predict the other variable’s value even if the individual samples 
have no covariance.  
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An internal CDF study that didn’t make it to prime time
– dimuon mass spectrum with signal fit

249.7±60.9 events fit in bigger
signal peak (4s? No!)

Null hypothesis pseudoexperiments
with largest peak fit values

(not enough PE’s)

Looks like a lot of spectra in S. Stone’s article
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A Useful Tip about Limits

It takes almost exactly 3 expected signal events to exclude a model.

If you have zero events observed, zero expected background, then the limit will
be 3 signal events.

If p=0.05, then r=-ln(0.05)=2.99573

You can discover with just one event and very low background, however!  
Example:  The Ω- discovery with a single bubble-chamber picture.

Cut and count analysis optimization usually cannot be done simultaneously
for limits and discovery. 

But MVA’s take advantage of all categories of s/b and remain optimal in both cases;
but you have to use the entire MVA distribution

€ 

pPoiss(n = 0,r) =
r0e−r

0!
= e−r



Extending Our Useful Tip About Limits
It takes almost exactly 3 expected signal events to exclude a model.

If you have zero events observed, zero expected background, and no
systematic uncertainties, then the limit will be 3 signal events.

Call s=expected signal, b=expected background.  r=s+b is the total prediction.

€ 

L(n = 0,r) =
r0e−r

0!
= e−r = e−(s+b )

€ 

0.95 =

" L (data | r)π (r)dr
0

rlim

∫

" L (data | r)π (r)dr
0

∞

∫
=
−e−(s+b )

0

rlim

−e−(s+b )
0

∞ = e−rlim

The background rate cancels!  For 0 observed events, the signal limit does not
depend on the predicted background (or its uncertainty).  This is also
true for CLs limits, but not PCL limits (which get stronger with more background)

If p=0.05, then r=-ln(0.05)=2.99573
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A “Unicorn”

 Run : even t  7402 :   7722   Da t e  960807  T ime  183402                                  
 Ebeam 80 . 500  Ev i s  145 . 7  Emi ss   15 . 3  V t x  (    0 . 00 ,    0 . 00 ,    0 . 00 )               
 Bz=4 . 027  Bunch l e t  2 / 2   Th r us t =0 . 9928  Ap l an=0 . 0000  Ob l a t =0 . 1026  Sphe r =0 . 0141     

C t r k (N=   1  Sump=  44 . 8 )  Eca l (N=  10  SumE=  96 . 4 )  Hca l (N=  6  SumE=   6 . 6 )  
Muon (N=   3 )  Sec  V t x (N=  0 )  Fde t (N=  0  SumE=   0 . 0 )  

Z

X

Y
   200 .  cm.   

 Cen t r e  o f  sc r een  i s  (    0 . 0000 ,    0 . 0000 ,    0 . 0000 )         

50  GeV2010 5

 Run : even t  7402 :   7722   Da t e  960807  T ime  183402                                  
 Ebeam 80 . 500  Ev i s  145 . 7  Emi ss   15 . 3  V t x  (    0 . 00 ,    0 . 00 ,    0 . 00 )               
 Bz=4 . 027  Bunch l e t  2 / 2   Th r us t =0 . 9928  Ap l an=0 . 0000  Ob l a t =0 . 1026  Sphe r =0 . 0141     

C t r k (N=   1  Sump=  44 . 8 )  Eca l (N=  10  SumE=  96 . 4 )  Hca l (N=  6  SumE=   6 . 6 )  
Muon (N=   3 )  Sec  V t x (N=  0 )  Fde t (N=  0  SumE=   0 . 0 )  

Y

XZ

    10 .  cm.   

 Cen t r e  o f  sc r een  i s  (   22 . 5000 ,    0 . 0000 ,    0 . 0000 )         

 Run : even t  7402 :   7722   Da t e  960807  T ime  183402                                  
 Ebeam 80 . 500  Ev i s  145 . 7  Emi ss   15 . 3  V t x  (    0 . 00 ,    0 . 00 ,    0 . 00 )               
 Bz=4 . 027  Bunch l e t  2 / 1   Th r us t =0 . 9928  Ap l an=0 . 0000  Ob l a t =0 . 1026  Sphe r =0 . 0141     

C t r k (N=   1  Sump=  44 . 8 )  Eca l (N=  10  SumE=  96 . 4 )  Hca l (N=  6  SumE=   6 . 6 )  
Muon (N=   3 )  Sec  V t x (N=  0 )  Fde t (N=  0  SumE=   0 . 0 )  

Z

X

Y
   200 .  cm.   

 Cen t r e  o f  sc r een  i s  (    0 . 0000 ,    0 . 0000 ,    0 . 0000 )         

50  GeV2010 5

Ambiguous or Missing Data


