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Recommended Reading Material

* Particle Data Group reviews on Probability and Statistics.
http://pdg.lbl.gov

* Frederick James, “Statistical Methods in Experimental
Physics”, 2" edition, World Scientific, 2006

* Louis Lyons, “Statistics for Nuclear and Particle Physicists”
Cambridge U. Press, 1989

* Glen Cowan, “Statistical Data Analysis” Oxford Science
Publishing, 1998

* Roger Barlow, “Statistics, A guide to the Use of Statistical
Methods in the Physical Sciences”, (Manchester Physics Series) 2008.

* “Markov Chain Monte Carlo In Practice”, W.R. Gilks, S. Richardson,
and D. Spiegelhalter eds.

* Bob Cousins, “Why Isn’t Every Physicist a Bayesian” Am. J. Phys 63, 398 (1995).

August 7, 2019 T. Junk Stat. Methods 2


http://pdg.lbl.gov/

Meetings on Statistics in HEP (with real Statisticians!)

The Phystat-Nu Series. Each has a link to suggested reading material for physicsists

and for statisticians

https://indico.cern.ch/event/735431/ CERN, 2019
https://indico.fnal.gov/event/11906/ Fermilab, 2016
https://indico.ipmu.jp/indico/event/82/ At the IPMU Institute in Kashiwa, Japan, 2016

Phystat Series — tends to be collider-centric but still useful

http://indico.cern.ch/conferenceDisplay.py?confld=107747  Phystat 2011
http://www.physics.ox.ac.uk/phystat05/ Phystat 2005
http://www-conf.slac.stanford.edu/phystat2003/ Phystat 2013
http://conferences.fnal.gov/cl2k/

See Alex Himmel's talk at INSS 2017
https://indico.fnal.gov/event/13429/other-view?view=standard

And K. Cranmer’s lectures at HCPSS 2013 http://indico.cern.ch/event/226365/
| am also very impressed with the quality and thoroughness of Wikipedia articles
on general statistical matters.
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The Scientific Method Classical Inference”

e Devise a hypothesis to test

* Motivated by prior observations, or possibly not
* Not already excluded
* "Interesting" to the community or to everyone
* Some hypotheses/measurements have technical value as inputs to
subsequent high-profile measurements
* Testable — it must predict something that is different from alternative hypotheses
* "Null" vs. "Test" hypotheses (names not always applicable). You need at least two
hypotheses to make a test
* Precision measurements select from a continuous spectrum of hypotheses
* A delicate balancing act — theorists work very hard to devise good hypotheses

* Design an experiment to test the hypothesis
* Optimize the sensitivity at this stage

* Construct and operate the experiment

e Analysis: confront hypotheses with data.
e Karl Popper: You can only rule out hypotheses, never prove one true.

* Estimate and include systematic uncertainties
* Report results!
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Probability

» Testable hypotheses make predictions of observable data
* You need a full model of your experiment, including
* The physics model being tested
 Experimental apparatus
e Beam flux and spectrum
* Interaction cross sections (differential)
e Detector response
* Reconstruction and event selection
e Systematic uncertainties on all of the above

* Data are randomly drawn from true parent distributions which are not
perfectly known.

Predictions of a model take the form of frequentist probabilities

p(data|model). These are defined to be the fraction of experimental outcomes
observing data in a large number of identical repeated experimental trials, assuming
that the model is true.



The Binomial Distribution

Given n particles entering the detector, and each one has a probability p
of interacting, then the distribution of the number of interactions k if the experiment
is repeated many times is binomial.

The observed number of interactions is k (the "data").

n may also be observed (e.g. incoming charged particles in LArIAT or ProtoDUNE),
but in neutrino experiments, it too is predicted from a flux and

an exposure (running time and detector mass)

) n _
Binom(k|n,p) = (k) pk(1—p)nk
where

(n) _ n!
k) kl'(n—k)
Some properties:

(k) = pn

o(k) = /Var(k) = {/np(1 - p)

The sum of two binomally-distributed numbers with the same p is binomially distributed
with that p. You can add your data together in a histogram.
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The Poisson Distribution

In general, we start with /ots of neutrinos, and very few interact with the detector.
Binomial probabilities are difficult to work with — 1013! is a big, big number.

lim Bi — "\ = Poiss(k _rke
lim Binom (k‘n,p = ﬁ) = Poiss(k|r) = o
r is the rate.
(k) =r
Var(k)=r

o(k) =/ Var(k) = r

Commonly used to model radioactive

z Poiss(klr) =1 Vr decay event distributions. They're really
o binomial, but the number of atoms is usually

so big it is a great approximation

f Poiss(k|r)dr =1 Vk
r=0

August 7, 2019 T. Junk Stat. Methods 7



Composition of Poisson and Binomial Distributions

Say we have a rate of gl events, but our selection efficiency
IS &€

Poiss(k leoL) = Binom(k | N £)Poiss(N | oL)
N=0
A more general rule: The law of conditional probability

P(A and B) = P(A|B)P(B) = P(B|A)P(A) more on this one latel

And in general, P(A) = EP(A | B)P(B)



Joint Probability of Two Poisson Distributed Numbers

Example -- two bins of a histogram
Or -- Monday’s data and Tuesday’s data

Poiss(x | u) x Poiss(y |v) =Poiss(x + y lu+ v) x Binom(x | x + vy, H )
u+v

The sum of two Poisson-distributed numbers is Poisson-
distributed with the sum of the means ("Raikov's Theorem")

EPoiss(k | w)Poiss(n — k |v) =Poiss(n | u+ v)
k=0

Application: You can rebin a histogram and the contents of each
bin will still be Poisson distributed (just with different means)

Question: How about the difference of Poisson-
distributed variables?



The Gaussian (or "Normal") Distribution

Gauss(x|u, o) =

Mean: (x) = u
Width: Var(x) = 02

(1/SQRT(2+3.1415))+EXP(—=X#+2,/2)

Sum of Two Independent Gaussian Distributed
Numbers is Gaussian with the sum of the means
and the sum in quadrature of the widths

Gauss( 2.1+ V. 07 +07 | = [ Gauss(x .0, )Gauss(z - x.v,0, )dx

A difference of independent Gaussian-distributed numbers is also
Gaussian distributed (widths still add in quadrature)
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Areas under the Normal Distribution Curve

99.7% of the data are within

€ 3 standard deviations of the mean >
95% within
2 standard deviations
68% within
<— 1 standard —>
deviation
u— 30 u— 20 U—0 7 u+o U+ 20 u+ 30

By Dan Kernler - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36506025
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The Central Limit Theorem

The sum of many small, uncorrelated random numbers

is asymptotically Gaussian distributed -- and gets more so

as you add more random numbers in. Independent of

the distributions of the random numbers (as long as they stay

S m a I I ) . 8000 __I LI I N I I B l_— 15000 L L |n=|2| T 1]
6000 — i ]
~ ] 10000 -
4000 - - -
2000 = 4 5000 -
C n=1 ] - .
0 NI SETE (A BT A R N . 0 | " |
0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 2
LI L L I LI L | LI 1 5000 LT TT I LI I LI ] LI | LI B
10000 10000 _
5000 5000 — ]
1 1 l L 11l l L1111 l 1111 1 1
. . 0 1 2 3 4 3
20000 Froo [T T [ Trr[rrrprr LN B B B L B B B N L B B B
B n=10 1 20000 n=135 —
15000 — - —
B 1 15000 — —
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5000 |- -1 s000 [ _
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August 7, 2019 T. Junk Stat. Methods

12



Poisson for large r is Approximately Gaussian of width

0 2 N
r=0.5

llllll

0 2 4 6
r=2.0
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o(k) =~Tr

U.‘I-I

0.1-|

r=4.0

0 2 4 € & 10 12 14 16
r=8.0

If, in an experiment
all we have is a
measurement n, we
often use that to
estimate r.

We then draw vk ("root n")
error bars on the data.

This is just a convention,

and can be misleading.

We still recommend you

do it, however.

0 2 4 6 & 10 12 14 16 18 20 22 24 26 28

r=16.0
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Why Put Error Bars on the Data?

“Il n'est pas certain que

 To i1dentify the data to people who tout soit incertain.
are used to seeing it this way (Translation: It is not certain
that everything is uncertain.)”
* To give people an idea of how many — Blaise Pascal, Pascal's Pensees
data counts are in a bin |
when they are scaled (esp. on a Z ;CIM'S R A %9& ot e ZTT‘\?
logarithmic plot). E 10°s B' (350 GeV/c):
3 = Wzies
* So you don’t have to explain oL s ] citets il
yourself when you do something [ ]Dibosons 3
different (better) ol 7 )
-
But: vk # T 43 3
L1 I R PRI ! | ]

2 4 6 8 10

The true value of r is 0 .
No. of all jets
usuaIIy unknown https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEX011066
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Aside: Errors on the Data? (answer: no)

Standard to make MC histograms with no errors: Data points

with error bars: L
Nobs = v/Mobs

But we are not uncertain of n,,,!] We are only uncertain
about how to interpret our observations; we know how to count.

Collider example. Neutrino papers often put prediction uncertainties in
separate tables.

Signal ZZ®) Z +jets, it Observed
4u 2.09+0.30 1.12+0.05 0.13+0.04 6
2e2u/2u2e 229+ 033 0.80+0.05 1.27+0.19 5
4e 0.90+0.14 0.44+0.04 1.09+0.20 2

ATLAS Collab., arXiv:1207.7214
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Sometimes another convention is adopted for showing error bars on the data

14p

12 Ve e Data

10F +

8; Best-fit spectrum

of

h There are
; 4: Unoscillated prediction .
8 of several options.
éé‘_ -
i \Y :
5 4 3 ¢ Need to explain
m [ . .

i S which one is

* LWL -_ chosen

]— 2 1; . l«-« + — e 3 ﬂ— * -

---I-..Jiﬂ;;—i:ﬁtr—-h ._t—t“:"_:li;“—[_‘.ibt—“_h:,—i—,_,_,:;—,

i 11 I 11 1 T 11 1 1 1 1 1 1 11
0.2 04 06 0. 1 1.2 02 04 06 08 1 12
Reconstructed neutrino energy (GeV)

T2K Collaboration, Phys.Rev.Lett. 121 (2018) no.17, 171802
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Not all Distributions are Gaussian

Track impact
parameter
distribution
for example

Multiple

scattering --

core: Gaussian;

rare large scatters;
heavy flavor,
nuclear interactions,
decays (taus in

this example)

August 7, 2019

| do from light quark jets (other taus in evts with taus matching MC) I

10

10

10

3

jet dO
"Entries 11988
................................ Mean 0.006378
! ! I ! ! ! ! RMS 0.01347
B Underflow 0
= Overflow 558
- Integral 1.143e+04
i Core is approximately
Gaussian
EIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 11 11 111 11
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
“All models are false. Some
models are useful.”
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Statistics is the inverse of Probability
Probability:

Models with Predicted data

distributions | have not read

this book but |
like the cover.

parameters

Reasoning

Statistics: Backward

Sample of data drawn Tests of models and

parameter values

from an unknown true
distribution

Guess which is easier! Inverse reasoning is usually ill-posed.
We seek to quantify the range of possible models consistent with data.

Back to probability: Characterization of performance of statistical methods.

Usually you need to calculate experiment sensitivity before you run the experiment.
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Statistical Uncertainty on an Average of Independent
Random Numbers Drawn from the Same Gaussian Distribution

Useful buzzword: “lID” = “Independent, identically distributed

N measurements, x; = ¢ are to be averaged
N
_ 1 z | | |
X = X |sfa?1 unbiased estimator
l of the mean
N <=
The square root of the variance of the sum s ,/ No2

so the standard deviation of the distribution of
averages 1S

O Worth

Remembering
’\/ N this formula!

O’E_



Estimating the Width of a Distribution

It’s the square Root of the Mean Square (RIMS) deviation from the true mean

n.b. Physics notation
of RMS is RMS of the E (X, = Uy0)”
i

differences from K _
the mean, not just o, (U, known) =

raw RMS

N

BUT: The true mean is usually not known, and we use the same data to estimate
the mean as to estimate the width. One degree of freedom is used up by the
extraction of the mean.

This narrows the distribution of deviations from the average, as the average is
closer to the data events than the true mean may be. An unbiased estimator

of the width is:
E(xi - x)z

N -1

o, (u,, unknown) =
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How Uncertainties get Used

e Measurements are inputs to other measurements -- to compute
uncertainty on final answer need to know uncertainty on parts.

* Measurements are averaged or otherwise combined -- weights
are given by uncertainties

» Analyses need to be optimized -- shoot for the lowest uncertainty

» Collaboration picks to publish one of several competing analyses
-- decide based on sensitivity

» Laboratories/Funding agencies need to know how long to run
an experiment or even whether to run. PINGU and P35.

Statistical uncertainty: scales with data (1/sqrt(L). Systematic uncertanty
often does too, but many components stay constant -- limits to
sensitivity.
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The Difference between "Error" and "Uncertainty"

Particle physicsists tend to use these words interchangeably, but they really mean
different things.

* Error = (measured —true): Usually the error is unknown
* Uncertainty: A prior or posterior distribution of the error, often represented as

just one or two numbers.

| | OFTEN WRONG,
A\ NEVER IN DOUBT.
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Examples from the
front of the PDG
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Propagation of Uncertainties

Covariance: 0-121,?) — <(’U, — ’l_l,) (U T 6)>

If

r = au + bv

then

o, = a“ oy,

In general, if

bQJg

Qabagv

z = f(u,v)

2= (G2 o () o

ou

V

ox

ou

@

This can even
vanish!
(anticorrelation)

) (5:) 7



Zero Covariance Does NOT Imply Independent!

py=0,/(0.0)

N .
“',‘1(’“ 3 ) ’__" L r," '\ . ‘\,.:'. ) .‘: . ....\ ." :. ..}'.'4“.,‘ . '.r »
A L . AN 4 e . O . ‘Q‘ g W 9
N AN S A St ey . | L . e ny ‘% 4 N »!
= o W ¥ Sl S A A SR RIS e TN ¥ '
70 -L‘}.‘ PN S S 1 3l e e - ) .'g' , *.
o T MWes 8~ .t oD VT o '.s,r“ ' ' ) .
n &) A o A T ; b . . o

http://en.wikipedia.org/wiki/Correlation_and_dependence
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v? Fitting and Goodness of Fit

For n independent Gaussian-distributed random numbers, the
probability of an outcome (for known o; and ;) 1s given by

n
p(aj‘]_,. . 73771} — H g(aji7/’ti70—i>
1=1

n 1 N2/ 2
p(x1,...,on) = [] o (@i—p;)*/20;

i—=1 \/27702-2

If we are interested in fitting a distribution (we have a model
for the p; in each bin with some fit parameters) we can maximize
p or equivalently minimize

N (e — )2
XQ:Z(Z 2#7,) — _2lnp4+ec

i=1 9
For fixed p; this 2 has n degrees of freedom (DOF)

o; includes
stat. and syst.
errors



Counting Degrees of Freedom

n 2
Z: M has n DOF for fixed y; and o;

If the p, are predicted by a model with free parameters

(e.g. a straight line), and y? is minimized over all values

of the free parameters, then Approximate! Not always!

P (*cough*)

DOF = n - #free parameters in fit. g IRERES =
Example: Straight-line least-squares fit: : »
DOF = npoints - 2 (slope and intercept float) 5 \14&
% ko z /
With one constraint: intercept =0, “| 7
6 data points, DOF = ? i Y .
J 2

] {0 2-0 3.0 L0 So be

F /n
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MC Statistics and “Broken” Bins

>
8 _o—Data, [Ldt=2.01b"
0 102l 23 [ Fakey, Real+fake b
— ; Bl Realy, Fake b
@ Cve
Q EEyb
..g 10 |¢ Background Uncertainty
g ////,//,
L i NDOF=?
1l
107}

50 100 150 200 250 300 _ 850 400
E;(v) [GeV]

e Automated tools cannot tell if the background expectation
is really zero or just a downward MC fluctuation.
e Real background estimations are sums of predictions with
very different weights in each MC event (or data event)
e Rebinning or just collecting the last few bins together often helps.

e Advice: Make your own visible underflow and overflow bins
(do not rely on ROOT’s underflow/overflow bins -- they are usually
not plotted. Tools may ignore u/o bins
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"Partially" Broken Bins? How Can we Tell the Bins are Broken?

An Extreme Example (names removed)

o There many not be enough
3t information in this histogram
- to determine shape.
2.5 .
2:_ | | | One bin may be right answer.
F e
15 Orange contribution was
| ] estimated from a data
' [ | D [ sideband — hard just to run
0.5! some more MC to fix the
problem!

% 01 02 03 04 05 06 07 08 09 1

Questions: What’s the shape we are trying to estimate?
What is the uncertainty on that shape?
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The x? Distribution

Plot from Wikipedia:
“k” = number of degrees of Freedom

Cumuliative 1 £ T
Distribution r(f) '

(.0

Assumes errors are Gaussian,
the model is true, and
and uncertainties are correct.

August 7, 2019 T. Junk Stat. Methods 30



vZ and Goodness of Fit

* Gaussian-distributed random numbers cluster around p;
~68% within 1c. 95% within 2. Very few
outside 3 sigma.

TMath::Prob(Double_t Chisquare,Int_t NDOF)

Gives the chance of seeing the value of
Chisquared or bigger given NDOF. 1.000

0.500

L1111

0.200
0.100
0.050

This is a p-value (more on these later 2346 8

\10 20\30 \ 50
L1 1 | LAl l|

345 7 10 20 30 4050 70 100

L1 llll}

0.020
0.010—
0.005

p-value for test
o for confidence intervals

Ll llllJ

0.002
0.001

Figure 33.1: One minus the x? cumulative d1str1buuon, 1— F(x?;n), for n degrees
of freedom. This gives the p-value for the x? goodness-of-fit test as well as one

minus the coverage probability for confidence regions (see Sec. 33.3.2.4).
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A Rule of Thumb Concerning x>

Average contribution to y? per DOF is 1. y?/DOF
converges to 1 for large n for distributions compared

with the true model with correct uncertainties and

Gaussian-distributed errors.

25
2.0
1.5
xX%/n
1.0

0.5

0.0
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!\Illlllllllllll
|
I
|
|
|
|
I

<

=

10 20 30 40 50
Degrees of freedom n

T. Junk Stat. Methods

From the PDG
Statistics Review

n.b. You can make

v?/DOF as small as you
like by overbinning Poisson
data.

No such thing as an unbinned

v?/DOF test (though some
have tried)
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An Example of a Dodgy Fit

1.2 —

Error bars are
either correlated
or overestimated

£ A naive least-squares
S fit will give uncertainties
2L that are unreliable for
N i the slope and intercept
= 04—

- Chisquared (not shown)

02 per DOF is tiny
0 —l 1 1 I 1 1 1 I 1 1 1 I 11 1 I 1 1 1 I 11 1 I 1 1 1 I 1 1

0 20 40 60 80 100 120 140 160

trace length [mm]

Fig. 65. Correlation of noise and the trace length on the pad-plane PCB board.
A straight line was fit to the data.

J. Alme et al. / Nuclear Instruments and Methods in Physics Research A 622 (2010) 316-367
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Another Questionable Fit

x1 03 pro
_1 02 — Entries 113334
- Mean 1.556e+09
— Meany -1.106e+05
- Std Dev 2.846€+06
-1 04 — Std Dev y 809.1
- %2/ ndf 361.1/166 Poor Chisquare
— A 0.0001387 + 0.0000002 . .
— B -3.263e+05 + 3.473e+02 Fit Uncertainties
—106 — way too small
108 —
— L ]
B T A
o wﬁ #?#*#* Q# F" +
112 ﬁﬁ I ++ |
14—
~116|—
—118 — | | | | | | | |
02/26 03/10 03/24 04/06 04/20 05/03 05/17 05/30 06/13 06/26

Time [month/day]

Labels removed. Model is naive (or error bars do not cover known
reasons for deviation from the model). It was probably good enough for the purpose though.
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What ROOT Does By Default

Default is Neyman's
chisquared

Error = sqrt(nobs)
in each bin.

lgnores bins with
nobs = 0.

Use the "L" option
in TH1::Fit()

to use the Poisson
likelihood instead

August 7, 2019

hgx0
B Entries 60
140— Mean —-0.04431
— RMS 0.1181
| x2 / ndf 7.882e-08 /0
B Constant 122.6 £23.5
120— Mean  0.1153 +0.0845
B Sigma 0.1532 + 0.0395
100—
80—
60—
40—
20—
0 B 1 1 1 | l | | | 1 l 1 1 1 1 I 1 1 | | | | | 1 1 1 l 1 1 1 1 l | | Il 1
—2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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A Typical Situation: Data are both too wide and too
narrow for the Gaussian model

Solution — try fitting a sum of two Gaussians. If the widths are similar, the uncertainties
will be highly correlated.

_IIIIIIIIIIIllllllllllllllllllll_

- Pb-Pb Gaussian fit ]
1400 \/s, =276 TeV 0=21.5+0.2 ps]

events

1200+ .
1000; _
800;
600;

400F

ALICE Collab, 200
arXiv:1402.4476 ;

O 11._“1[

300 -200 -100 O 100 200 300
(TOA-TOC)/2 (ps)
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A Reasonable Fit

The fact that

9 &
- the most

8 = discrepant
S TF point is the
vt 6 E one on the
o — .
£ = end might

5 . )
é’o = raise a question
7 4 but the
% s E fluctuations
b = look real.

2

E

0 : 111 l L1 1 1 l 11 1 1 l L1 1 1 l L1 1 1 l 11 1 1 l L1 1 1 l 11 1 1 l L1 1 1 l 11 1 1

60 70 80 90 100 110 120 130 140 150 160

number of TPC track points N

J. Alme et al. / Nuclear Instruments and Methods in Physics Research A 622 (2010) 316-367
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Other Goodness-of-Fit Tests

! Cos6, [0.8;0.9] |

L] o ]' L 0 T T T I T T . T ] T T T T

One you can do in your head (sort of)

The run test. Count how many
consecutive data points are below
the prediction, or how many

are above the prediction in a row.

CC 0r)/d Cost) 9 T, 110 cm?/GeVin]

Residuals of mismodeled distributions

v
"

9% (

often have a "wavy" structure to them. - ol e S
T, [GeV]
Even if the y? is good, the run test e e
may show a problem T S o
S. Dytman

http://npc.fnal.gov/wp-content/uploads/2018/11/fnal-dytman-nov18.pdf

There is no substitute for looking critically at your data! And your MC!
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The Kolmogorov-Smirnov GOF Test

x% Doesn’t tell you everything you may want to know about distributions that

have modeling problems.

Ideally, it is a test of two unbinned distributions to see if they come from the same

parent distribution.
1.0
Procedure:
 Compute normalized,
cumulative distributions

of the two
unbinned sets of events. 6
Cumulative distributions
are “stairstep” functions 4
* Find the maximum
distance D between the 9

two cumulative distributions

called the “KS Distance”

KS5-Test Comparison Cumulative Fraction Plot

http://www.physics.csbsju.edu/stats/KS-test.html

August 7, 2019
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The Kolmogorov-Smirnov GOF Test

* p-value is given by this pair of equations , , ,
KS—Test Comparison Cumulative Fraction Plot

1.0 -
8
_ 2 1 -1 _2].2Z2 6
p(2)=2>(-D""e i
j=1 4+
You can also compute the p-value by running 2k
pseudoexperiments and finding the -
distribution of the KS distance. or'
Distributions are usually binned 0 10 20 o 30 40
though — analytic formula no longer applies.
Run pseudoexperiments instead.
See also F. James,
See ROOT's Statistical Methods in
TH1::KolmogorovTest() Elementary Particle Physics, 2" Ed.

which computes both D and p. It is asymmetric
in its treatment of histograms.
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Including Correlated Uncertainties in y?

Example with

 Two measurements a;+ u,* ¢, and a, * u, £ ¢, of one parameter x
* Uncorrelated errors u, and u,

 Correlated errors c; and ¢, (same source)

C@) = Y (2-a)C;i—ay)

i j=1,2
_ u? + c% 20162 | = 0% P012<72
c1cp  u5 + c5 po10o 05

If there are several sources of correlated error ¢? then the
oft-diagonal terms become ) cfch
p



BLUE
2 _ o 'C_l o
@)= Y (o-a)C; (@ - aj)
1,7=1,2
Procedure: Find the value of x which minimizes y?

This is a maximum likelihood fit with symmetric, Gaussian
uncertainties.

Equivalent to a weighted average:

xbest = Ewiai with Ewi =1
i l

1 standard-deviation error from ¥ 2(x,,,26¢)-%*(Xpes)=1

Can be extended to many measurements of the same parameter x.



More General Likelihood Fits

L= P(data|§, V)

-

0 “Parameters of Interest” oscillation parameters, cross-section, b.r.
v “Nuisance Parameters” Exposure, acceptance,
detector resolution.

Strategy -- find the values of 6 and v which maximize L
Uncertainty on parameters: Find the contours in 6 such that
IN(L) = In(L,,o) - $?/2,

to quote s-standard-deviantion intervals. Maximize L over v
separately for each value of 8. Buzzword: “Profiling”



Be Sure to Normalize L

L= P(data|§, V)

e

0 “Parameters of Interest” oscillation parameters, cross-section, b.r.
v “Nuisance Parameters” Exposure, acceptance,
detector resolution.

ZPossible_clata L(data|6,V)=1
for all values of 6 and ¥

Or your answers will be wrong.



More General Likelihood Fits
Advantages:

« “Approximately unbiased”
 Usually close to optimal

 Invariant under transformation of parameters. Fit for a mass
or mass? doesn’t matter.

Unbinned likelihood fits are quite popular. Justneed L = P (data| 6 ) 1_/))

Warnings:

* Need to estimate what the bias is, if any.

« Monte Carlo Pseudoexperiment approach: generate lots of random

fake data samples with known true values of the parameters sought,

fit them, and see if the averages differ from the inputs.

* More subtle -- the uncertainties could be biased.
-- run pseudoexperiments and histogram the “pulls™ (fit-input)/error -- should

get a Gaussian centered on zero with unit width, or there’s bias.

« Handling of systematic uncertainties on nuisance parameters by maximization
can give misleadingly small uncertainties -- need to study L for other values
than just the maximum (L can be bimodal)
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Extrapolating from
Near to Far

—— ND data
Base Simulation

Illlllu

Data-Driven Prediction

>
[
O]
=
[2]
2
c
)
>
w
o
z
wn
(=}
-

True Energy (GeV)

0 10 10 15 20 25

0 1 2 3 4 5 . 5
ND Reco Energy (GeV) 10° ND Events 10° F/N Ratio Pv,—ve) FD Events FD Analysis Bin

 Use the ND v, sample to predict the FD v, sample.
* Use the ND v, sample to predict the FD v, signal.

Alex Himmel at Phystat-Nu 2019
https://indico.cern.ch/event/735431/contributions/3137791/attachments/1783219/2902091/2019-01-23-lbl-stats.pdf
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FD Events

True Energy (GeV)


https://indico.cern.ch/event/735431/contributions/3137791/attachments/1783219/2902091/2019-01-23-lbl-stats.pdf

Sensitivity Projections

* Need to evaluate many experiment design choices quickly
e Usually involve fits to the Asimov dataset
* Asimov data = median expected outcome, no Poisson fluctuation. From
Isaac Asimov's short story Franchise in which one "typical" voter cast a ballot
for everyone in the galaxy.

CP Violation Sensitivity

10
E DUNE Sensiti\_lity ‘ ‘ 7 years (staged)

ot :izzrzneal Srggggi 0.003 [0 10 years (staged)

8 F 6, NuFit 2016 (90% C.L. range) === sin’6,, = 0.441 £ 0.042

43 Units of sensitivity are usually
w OF ' o = +/Ayx? using Gaussian approximations for
<] L F LT 56 . . . .
T T S SEE | S the distribution of possible outcomes (68%
b F iy .

4F are within +1o of central)

3:_...:.:.'.......................‘-_:‘.‘...?.(f....:.i ....................... '-,_ '-,‘....

2F

OEI Ll I LAl L1l I L1l I Ll I“'t:l L I LAl I Ll I L1l I Ll I‘

-1 -0.8-0.6-04-02 0 0.2 04 0.6 08 1

dop/T

DUNE CDR sensitivity — TDR is similar



The “Neyman Construction” of Frequentist Confidence Intervals

Essentially a
“calibration curve”

e Pick an observable x
somehow related to the
parameter @dyou’d like
to measure

e Figure out what
distribution of observed
x would be for each value
of @ possible.

e Draw bands containing
68% (or 95% or whatever)
of the outcomes

e Invert the relationship using

the prescription on this page.

Proper Coverage is Guaranteed!
August 7, 2019

parameter 6

(90) %,(8,)

Possible experimental values x

A pathology: can get an

empty interval. But the error

rate has to be the specified one.

Imagine publishing that all branching ratios
between 0 and 1 are excluded at 95% CL.
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A Special Case of Frequentist Confidence Intervals: Feldman-Cousins

Each horizontal band contains 68% of
the expected outcomes (for 68% CL
intervals)

But Neyman doesn’t prescribe which 68%
of the outcomes you need to take!

Take lowest x values: get lower limits.
Take highest x values: get upper limits.

Feldman & Cousins's Recommendation:
Sort outcomes by the likelihood ratio.

R =L(x]|0)/L(x|Opeqt)
For all x, R=1 for some 6. And R<1 always.
Picks 1-sided or 2-sided intervals --

no flip-flopping between limits and 2-sided
intervals.

Mean ;1

W L (5 (= ~ =
h_ II1IITTIITIITII1IIITIT\'ITTIIIIITTITTIT

N

-

August 7, 2019 T. Junk Stat. Methods

1O

FC Confidence Belt
for a Gaussian with mean u>0
T. Karbach

Measured Mean x

G. Feldman and R. Cousins,

“A Unified approach to the
classical statistical

analysis of small signals”
Phys.Rev.D57:3873-3889,1998.
arXiv:physics/9711021

Also explained in Kendall & Stuart
in the 1940's.

No empty intervals!
49



A 1D FC Belt Example with Bounds on Both Sides

D@ Run Il preliminary (4 fb')

ctrue
—

0.5

68% C.L.

95% C.L.
99% C.L.

/T I A
-4 -3 -2 -1 0 1 2 3

meas

A top-quark polarization correlation measurement.
Branching ratios, sin%6, and other variables have similar constraints
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Two-Dimensional FC Constructions

103:||||| T T 17T T T T TTT T T TTTTTH o7
- ) ) ] - T T T T T T T T T T T T T T T T T T
n This technique ] - Normal Hierarchy 90% CL R ocliiiiiza i a s e
I Raster scan (Y - — NOVA  — - MINOS 2014 1
. True point 30[~ ---- T2K 2018 - IceCube 2018 — &
— 10 E_ _E — I SK 2018 - ,-\\v i %
3] C 3 N I
a = - > = - =T ~ T e T e e
> B 1 () - 0.4
O : X -
& T i 2 F 1 ~10 --20 —30 -« Best fit NH
< - 03l ]
10 — o 2.5[— —
= = NE‘" 07t
- ] 3 | |
i T | | o.e>
1 | Lol Lol 1 \ B e . R 7] <\Cl§05-
-3 -2 -1 — i — ’
10 107 10 1 20— *Bestiit | | G
sin"(26) 0.4 05 0.6 od
FIG. 12. Calculation of the confidence regions for an example of the toy model in which Sln e
Am? = 40 (eV/c2)? and sin®(260) = 0.006, as evaluated by the proposed technique and the Raster 23 --20 —30 IH
Scan. 0.3 ) | i
0 % b 3n 21
aCP 2

F&C, Phys.Rev. D57 (1998) 3873-3889.
NOVA Collab. https://arxiv.org/abs/1906.04907

See A. Sousa CHEP 2018 for modern computational details
https://indico.cern.ch/event/587955/contributions/2938131/attachments/1685595/2710354/Sousa_SciDac4 NOvA HPC CHEP2018.pdf

Three-dimensional space of parameters of interest is much harder.
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A. Sousa, CHEP 2018

Computational Challenges

NOVA Preliminary

1 T

» Need Ax2 distributions for each point in sampled parameter space. 0.7f ]
Minimal set requires: oe- :
@ 1,200 points total for ten 1D Profiles, 60 points each for 2 octants of 83 o
@ 471 points total for four 2D Contours, after optimizing for regions of «";3 05

interest in parameter space @ 04
» For each point, need at least 4,000 pseudoexperiments to generate 0'30 " + = 4
accurate empirical distribution 2 dcp 2
© Depends on how large the critical value corresponding to desired Required No. of Minimum No. of
confidence level is (up to 30 for NOVA) Points Pseudoexperiment
@ Depends on number of systematic uncertainties included
1,671 6,684,000

@ Computing Ax2 for each pseudoexperiment takes between O(10 min)
to O(1 hour) for fits with high-level of degeneracy

» Previously done with FermiGrid + OSG resources - results obtained in ~4 weeks
@ FermiGrid provides a total of ~200M CPU-hours/year (50% CMS, 7% NOvVA). Use of OSG opportunistic resources by NOVA

doubles FermiGrid allocation (NOVA total of ~30M CPU-hours/year)

» 2018 analysis includes new antineutrino dataset + longer list of systematics = FermiGrid + OSG not enough to get to
results in timely fashion

NOvVA Analysis in HPC Environment - CHEP 2018 - Sofia, Bulgaria Alex Sousa - University of Cincinnati

2018 analysis: 10 histograms to fit, 2 runs of ~20M CPU hours each at NERSC

August 7, 2019 T. Junk Stat. Methods 52



Two complaints
“When you have P

: | 1) Elimination may be erroneous (Type-Il error) which
b ehmlnated a‘ll WhICh can create a false discovery (Type-| error)

ls lmpOSSlble then 2) How do we know all possibilities have been

considered?
- whatever remains,
o Nature may be outside the chosen model space
however 1mpr0bable entirely.
mUSt be ﬂle | If we know a priori somehow that the truth is in our

model space then this is okay.

truth.”

Some model spaces, such as properties of exotic
particles, may consist entirely of untrue models

and we would like to rule out the entire space if
we can. Otherwise we may just "discover" the

part of parameter space we cannot test.

Putting the null hypothesis in the model space does
not ensure completeness.

_A_rthur C On an OVle o The incompleteness in the model space

is usually in the nuisance parameter portion.
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rate/ 0.1 cm

rate

A Measurement of R(b) using
a double-tagging method
Eur.Phys.).C8:217-239,1999
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We thought for sure it was our
Lio imperfect detector modeling.
L

"

b

E T I T T T I T T T I T E 8 E T T I T T T T I T T T T I T T E .
2 E o af . ] Tweaking parameters one way
0¥ 1) 1 fixed one distribution and mad
i ] af £ 1 ixed one distribution and made
-3 1 N el - .
10 | { 10F ] the other one worse, and vice
g 3 af ]
4 g X 1 10 F 3 versa.
. N N I R :
5 e s oat o oY 3 X E
10 RS SRSSERIIIS o 1 i i
el j  Weended uptaking a systematic
EE— ‘ S0 o P uncertainty on detector modeling
L (cm) Ly/og due to this.
T T T 1T 17 11 L w
o
i —— 1< o .
S0 F We later discovered that the
T | ¢o07s | decay multiplicity of B hadrons
i =] 1 . measured by ARGUS and put in
i 1 0.005 .
002 |- - \ Pythia was ~1 track off the world
I 1 0.0025 average.
| | %
0 .
0123456789101 0 It took LEP-2 data with WW

Ns decays (no B's) to discoverthis.



K. McFarland, Phystat-nu 2019 summary talk

https://indico.cern.ch/event/735431/contributions/3137831/attachments/1785482/2906728/Neutrino Summary PHYSTATnu 2019 final.pdf

~N) <

Canonical cautionary tale: MiniBooNE
y V’c Vy

Experiments confronting data/MC discrepancies

Experiments need a model that describes their data

However, often, data/MC agreements are handled in a non-satisfactory way

» Overemphasising own data - breaking consistency with other neutrino data

» Largely ignoring complementary constraints from charged-lepton and hadron scattering

x10%

&%18 - MiniBooNE data with shape error
O 16 ~— RFG model (M{'=1.03 GeV,x=1.000)
5 :: wemeeeee RFG model (M}'=135 GeV,x=1.007)
‘Q RFG model (M} =135 GeV,x=1.007) <1.10
s 10
-
s 8 Nominal model
3 6
4
2
0 P o s 2 T YRS
0 02040608 1 1214 16 18 2

2
Q2 (GeV?)

A typical (and conveniently old and
non-controversial) example comes
from the MiniBooNE experiment:

Tweaking axial form factor parameter
+ Axial mass 1.03 -> 1.35 GeV

* Not consistent with bubble chamber results

Tweaking Pauli blocking

* Not consistent with textbook physics

Good description of own data.
But wrong physics!

25 January 2019

August 7, 2019

K. McFarland, Neutrino Summary

T. Junk Stat. Methods

* MiniBooNE observed a discrepancy in
its “CCQE" (charged current
quasielastic) events vs Q2.

e Attributed to axial form factor and Pauli
blocking, just an event distortion in Q2.

* We understand now this is, at least in
part, due to multinucleon production
with a different energy-momentum
transfer relationship.

* Burying the difference in form factor
means misreconstructing E,,.

The neutrino experiment experience
[combining data]

Speaker: Prof. Constantinos

Andreopoulos (Liverpool, STFC/RAL) 30
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Systematic Uncertainties

Roger Barlow's fine advice: https://arxiv.org/abs/hep-ex/0207026

Penalty for diligence:
 Someone who has one watch always knows what time it is. Someone
with two watches is never quite sure.

Paraphrasing Kyle Cranmer and Costas Andreopoulos, systematic uncertainties
come in three categories:

e The GOOD

* Those that are constrained with auxiliary measurements
* The BAD

* (educated) Guesses
* The UGLY

* Forgotten, omitted, dismissed, or unknown

Sometimes a GOOD systematic can have BAD or UGLY components, e.g. extrapolating
from a control sample into a signal sample requires some knowledge or guesswork.
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Reasons for Another Kind of Probability

e So far, we've been (mostly) using the notion that probability is
the limit of a fraction of trials that pass a certain criterion to total trials.

e Systematic uncertainties involve many harder issues. Experimentalists
spend much of their time evaluating and reducing the effects of
systematic uncertainty.

e We also want more from our interpretations -- we want to be able to make
decisions about what to do next.
e Which HEP project to fund next?

e Which theories to work on?
e Which analysis topics within an experiment are likely

to be fruitful?

These are all different kinds of bets that we are forced to
make as scientists. They are fraught with uncertainty,
subjectivity, and prejudice.

Non-scientists confront uncertainty and the need to make decisions too!



Bayes’ Theorem

Law of Joint Probability:

p(A and B) = p(A|B)p(B) = p(B|A)p(A)

Events A and B interpreted to mean “data” and “hypothesis”
L(data|@)m(6)
[ L(data|6")m(6")d6"

p(f|data) =

6 = set of model parameters

A frequentist would say: Models have no “probability”. One model’s true,
others are false. We just can’t tell which ones (maybe the space of considered
models does not contain a true one).

Better language: p(6|data) describes our belief in the different models
parameterized by 6



Bayes’ Theorem

is called the “posterior probability” of
P (8 | data) the model parameters

T (0) is called the “prior density” of the model parameters

The Bayesian approach tells us how our existing knowledge before we do the
experiment 1s “updated” by having run the experiment.

This 1s a natural way to aggregate knowledge -- each experiment updates
what we know from prior experiments (or subjective prejudice or some
things which are obviously true, like physical region bounds).

Be sure not to aggregate the same information multiple times! (groupthink)
We make decisions and bets based on all of our knowledge and prejudices
“Every animal, even a frequentist statistician, is an informal

Bayesian.” See R. Cousins, “Why Isn’t Every Physicist a Bayesian™,
Am. J. P., Volume 63, Issue 5, pp. 398-410



How | remember Bayes’s Theorem

p(hypothesis|data) =

p(datalhypothesis) x p(hypothesis)

Posterior “PDF”’ “Likelihood Function™
(“Credibility”) (“Bayesian Update™)

p(data)

ﬁ

Normalize this so that

/p(hypothesis|data)d(hypothesis) —1

for the observed data

TRJ HCPSS Statistics Lect. 4

—

“Prior belief
distribution”

60



Bayesian Upper Limits

Including uncertainties on nuisance parameters v Typically 7(r) is constant
Other options possible.

L’ (datalr) — j L(data|r, V)T[(V) dv See the PDG stats reveiw

Sensitivity to priors a
concern.

where 7{#) encodes our prior belief in the values of

the uncertain parameters. Usually Gaussian centered on

the best estimate and with a width given by the systematic.

The integral is high-dimensional. Markov Chain MC integration is

quite useful! The Metropolis-Hastings Algorithm and variants are very useful.

CDF Run Il Preliminary, L=3.6 fb" Mean 0.5284
Limits: ; 1~ Observed RMS 0.4487
= o8 Limit
Tl- g :
) ) M ' (data|r)m(r)dr 52 ;=160
0.95 = = — g%
fo L' (data|r)m(r)dr 3 =
0.2/ 5% of integral
A S R
1 2 3 a4 5
¢*BR/SM =T

TRJ HCPSS Statistics Lect. 4 ol



Bayesian Cross Section (or rate) Extraction

Same handling of
nuisance parameters L'(data|r) = j L(data|r,v)m(v)dv

as for limits

fr ( ata|r)n(r)dr The measured =g Uhigh ™ imax )
0.68 = OOYJV cross section MaX~(Fnax ~7iow )
fO L (datalT')T[(T)dr and its uncertainty

CDF Run Il Preliminary, L=3.2 fo!

Usually: shortest interval containing 68%
of the posterior

(other choices possible). Use the word
“credibility” in place of “confidence”

+0.8

st = 1.6 o7 pb

Marginalized Posterior (arb units)

If the 68% CL interval does not contain zero, then
the posterior at the top and bottom are equal

in magnitude. e
The interval can also break up into smaller pieces!

Also easily generalizable to many parameters of interest. -



Systematic Uncertainties

Encoded as priors on the nuisance parameters (V).

Can be quite contentious -- injection of theory
uncertainties and results from other experiments --
how much do we trust them?

Do not inject the same information twice.

Some uncertainties have statistical interpretations --
can be included in L as additional data. Others are
purely about belief. Theory errors often do not have
statistical interpretations.



Coping with Systematic Uncertainty

e “Profile:”

e Maximize L over possible values of nuisance parameters
include prior belief densities as part of the y? function
(usually Gaussian constraints)

e “Marginalize:”
 Integrate L over possible values of nuisance parameters
(weighted by their prior belief functions -- Gaussian,
gamma, others...)
» Consistent Bayesian interpretation of uncertainty on nuisance
parameters

« Aside: MC “statistical” uncertainties are systematic uncertainties

TRJ HCPSS Statistics Lect. 4 64



Parameter Estimation — Marginalize or Profile?

<1 B B BN

)
° - — Predicted g C - -
S o5 7 _____ Observed 7 - W+Jets, NN Discriminant CDF Il Preliminary 7.5 fb
20 | ] @ I
: ) I +0.57
15 ¢ Q 0.01 Osy = 3.04 53 pb
10 | ) = Assuming mmp=172.5 GeV/c?
- Predicted = 10;; ] =
S| Observed =15 E %
0 E e Q
-3 -2 -1N 0 o 1t (2_t ol o
uisance Parameter v (units of o o
- e — 60.005
o k =
_c=> 0.1 9
? ] n
@]
] o
0 |

] 0 2 4 6 8
. Single Top Quark Cross Sectionc_ [pb]

: S T T R I TS [T T T SN SO S S N A NN
0-3 -2 -1 0 1 2
Nuisance Parameter v (units of o)

If Pred = 10%;, and obs=15, then the likelihood would have one maximum,
but it would have a corner. MINUIT may quote inappropriate uncertainties as the
second derivative isn’t well defined.

The corner can be smoothed out — See But | know of no way

R. Barlow, http://arxiv.org/abs/physics/0406120, to get rid of the double-peak
http://arxiv.org/abs/physics/0401042 Nor should there be a way --
http://arxiv.org/abs/physics/0306138 t can be a real effect. See the LEP2 TGC measurements

TRJ HCPSS Statlstlcs Lect. 4



Even Bayesians have to be a little Frequentist

e A hard-core Bayesian would say that the results of an
experiment should depend only on the data that are observed,
and not on other possible data that were not observed.

e But we still want the sensitivity estimated! An experiment
can get a strong upper limit not because it was well designed,
but because it was lucky.

How to optimize an analysis before data are observed?
So -- run Monte Carlo simulated experiments and compute

a Frequentist distribution of possible limits. Take the median--
metric independent and less pulled by tails.



Cross-Checks in Data Subsamples

Do not improve discovery sensitivity (see Barlow's advice)
Give confidence that the model(s) are predicting the data adequately.

See an excess of events in a specific energy range? Look in all the corners of the
detector!

See something weird in the data — does it persist in other kinematic bins, run periods, etc.
Be careful of trigger bias — you will only see the events you seek!

A warning — splitting data up into small pieces enhances the look-elsewhere effect.
You will see discrepancies just due to randomness if you look in enough places.

"All data are infinitely unlikely" -- R. McPherson

A hazard: post-hoc analysis placing cuts around special events. The probability of seeing
one is smaller and smaller the tighter the cuts around the observed event get.

T. Kuffner: Using the data to select the model to test invalidates classical inference.



Alex Himmel, INSS Statistical Methods Lecture 2017

Real Life Examples

T2K 2011
Vertex distribution of ve candidate events
2000 rpeam direction 2000
1000 | 1000 | §
£ | £ * ;
CA L %!
I N "
% Of x Of 5
(O] [ Q "
- T N :
O O :
> > :
-1000 | -1000 :
.« o
-2000 T Y T T _2000 1 A " A 1 A
-2000 -1000 O 1000 2000 0 1000 2000 3000,
Vertex X (cm) Vertex R™ (cm®) x 10
These events are clustered at large R 7 Event outside FV
— Perform several checks. for example
* Check distribution of events outside FV — no indication of BG contamination
* Check distribution of OD events — no indication of BG contamination
* K.S. test on the R2 distribution yields a p-value of 0.03

August 7, 2019 T. Junk Stat. Methods
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A Solution: Take More Data if You Can

2000

1000}~

Vertex Y (cm)
o
|

-1000 -

2000l L L
2000 -1000 0 1000 2000

Vertex X (cm)

Open square points fail fiducial volume cut.

2000

1000

Vertex Z (cm)
()

-1000

-2000

0 1000

.................................
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"We observe no unexpected clustering and combined KS tests for uniformity in

r’> and z yields a p-value of 0.6"

T2K Collaboration, Phys.Rev. D91 (2015) no.7, 072010
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NEUTRON LIFETIME (Seconds)

@® Results using beam method @ Bottle method
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*Nico result (2005) was superseded by an updated and improved result, Yue (2013);

tPreliminary results

https://www.quantamagazine.org/neutron-lifetime-puzzle-deepens-but-no-dark-matter-seen-20180213/



Hypothesis Testing

e Simplest case: Deciding between two hypotheses.
Typically called the null hypothesis H, and the
test hypothesis H;

e Can’t we be even simpler and just test one hypothesis H,?
e Data are random -- if we don’t have another
explanation of the data, we’d be forced to call it a
random fluctuation. Is this enough?
* H, may be broadly right but the predictions slightly flawed
e Look at enough distributions and for sure you’ll spot one
that’s mismodeled. A second hypothesis provides guidance

of where to look.

e Popper: You can only prove models wrong, never

prove one right. All models are wrong;
some are useful.
e Proving one hypothesis wrong
doesn’t mean the proposed alternative must be right.



Frequentist Hypothesis Testing:
Test Statistics and p-values

Step 1: Devise a quantity that depends on the observed
data that ranks outcomes as being more signal-like or
more background-like.

Called a test statistic. Simplest case: Searching for a new
particle by counting events passing a selection requirement.

Expect b events in Hy, s+b in H;.
The event count n_ is a good test statistic.

Step 2: Predict the distributions of the test statistic separately
assuming:
Hy is true
H, is true
(Two distributions. More on this later)



Frequentist Hypothesis Testing:
Test Statistics and p-values

Step 3: Run the experiment,

get observed value of test g 6,30
statistic.
0,14
0,12
Step 4: Compute p-value
0,10
p(n2n,s | Ho) Y
0,06 +
Example: 004
H02b=,u=6 0,02 +
nObS = 10 0,00
p-value = (0.0839 0 2 4 6 8 101214 16 18 20 22 24
But many

. . ) often say that.
A p-value is not the “probability H, is true” Especially the popular media!
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So what is the p-Value?

A p-value is not the “probability H, is true” -- this isn’t even a Frequentist thing to
say anyway. If we have a large ensemble of repeated experiments, it is not true
that H, is true in some fraction of them!

p-values are uniformly distributed assuming that the hypothesis they are testing is
true (and outcomes are not too discretized).

Why not ask the question — what’s the chance N=N_,. (no inequality). Each outcome
may be vanishingly improbable. What’s the chance of getting exactly 10,000 events when
a mean of 10,000 are expected? (it’s small). How about 1 if 1 is expected?

If p < p.i then we can make a statement. Say p;;=0.05. If we find p < p_;, then we
can exclude the hypothesis under test at the 95% CL.

What does the 95% CL mean? It’s a statement of the error rate.

In no more than 5% of repeated experiments, a false exclusion of a
hypothesis is expected to happen if exclusions are quoted at the 95% CL.



Type | and Type Il Error Rates

(statistics jargon, getting more common in HEP)

* Type | Error rate: The probability of excluding the Null Hypothesis H, when H, is true.
Also known as the False Discovery Rate.

e Type Il Error rate: The probability of excluding the Test Hypothesis H; when H; is true.
The False Exclusion Rate.

Typically a desired false discovery rate is chosen — this is the value of p;,, also known

as a. Then if p < a, we can claim evidence or discovery, at the significance level given
by a.

We discover new phenomena by ruling out the SM explanation of the data!
-- the Popperian way to do it — we can only prove hypotheses to be false.

In some cases neither H, nor H; has any a priori prejudice for it, like the neutrino
mass hierarchy. I’'m not sure which gets called Type | and Type Il in that case; arbitrary.
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Common Standards of Evidence

Physicists like to talk about how many “sigma” a result Folklore:
corresponds to and generally have less feel for p-values. 95% CL - good

for exclusion
3o: “evidence”
50: “observation’
Some argue for
a more subjective
scale.

The number of “sigma” is called a “z-value” or "z-score" and is just
a translation of a p-value using the integral of one
tail of a Gaussian

)

Double_t zvalue = - TMath::NormQuantile(Double_t pvalue)

z-value (c) | p-value (1 -erf (Zmlue/ﬁ))
pvalue =
1.0 0.159
2.0 0.0228 055
3.0 0.00135 s
40  |3.17E5 o
5.0 2.87E-7

(1/SQRT(2#3.1415) EXP(~ X2 /2)
Tip: most physicists talk about p-values now but hardly
use the term z-value — we use the word “significance” instead (try not to conflate with

"sensitivity" which is expected significance)
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Why 5 Sigma for Discovery?

From what | hear: It was proposed in the 1970’s when the technology
of the day was bubble chambers.

Meant to account for the Look Elsewhere Effect. A physicist estimated how many
histograms would be looked at, and wanted to keep the error rate low.

Also too many 2o and 30 effects “go away” when more data are collected. Psychology
literature with p<0.05 criteria — lots of irreproducible results.

Some historical recollections:
http://www.huffingtonpost.com/victor-stenger/higgs-and-significiance b 1649808.html

And a modern take on the matter from L. Lyons: https://arxiv.org/abs/1310.1284

Not all estimations of systematic uncertainties are perfect, and extrapolations
from typical 1o variations performed by analyzers out to 50 leave room for doubt.

Some effects go away when additional uncertainties are considered. Example —
CDF Run | High-E; jets. Not quark compositeness, but the effect could be folded
into the PDFs.

If a signal is truly present, and data keep coming in, the expected
significance quickly grows (s/sqrt(b) grows as sqgrt(integerated luminosity)).

August 7, 2019 T. Junk Stat. Methods

77


http://www.huffingtonpost.com/victor-stenger/higgs-and-significiance_b_1649808.html
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CLAS Collab., Phys.Rev.Lett. 91 (2003) 252001

A Cautionary Tale — The Pentaquark “Discoveries”
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Coverage

A statistical method is said to cover if the Type-I error rate is no more than the
claimed error rate a. Exclusions of test hypotheses (Type-Il errors) also must
cover — the error rate cannot be larger than stated.

95% CL limits should not be wrong more than 5% of the time if a true signal is present.

If the results are wrong a smaller fraction of the time, the method overcovers.
If the results are wrong a larger fraction of the time, the method undercovers.

Undercoverage is a serious accusation — it has a similar impact as saying that the
qguoted uncertainties on a result are too small (overselling the ability of an experiment
to distinguish hypotheses).

Note: Coverage is a property of a method, not of an individual result. In some cases we
may even know that a result is in the unlucky 5% of outcomes, but that individual outcome
does not have a coverage property — only the set of possible outcomes.

The word coverage comes from confidence intervals — are they big enough to contain
the true value of a parameter being measured and what fraction of the time they do.



p-values and -2InQ

p-value for testing H; = p(-2InQ 2 -2InQ,,. | H;)

The green-shaded area to the right. ) LEP

- —— Observed my =115 GeV/c’
------- Expected for background

----=--- Expected for signal
plus background

&
[y
(V]

&
k.
T

If it is small, reject H;
The “or-equal-to” has similar effect here too.

=

=)

%
|

=
=
=3
ST

This one is called CL.,, (again, not my choice
of words). p-values are not confidence levels.

Probability density

0.04 -
Note: If we quote the CL as the p-value, we 0.02 |-
will always exclude H;, just at different CL’s
each time. 05" 5 o 5 10 15
-2 In(Q)
Lucky outcome: exclude at 97% CL
Do we exclude at the 50% CL?
From which distribution was
No! Set a once and for all (say 0.05). Then the data drawn? We know
coverage is defined. what the data are; we don’t

know what the distribution is!
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More Sensitivity or Less Sensitivity
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signal p-value very small.

Signal ruled out.

Possible to exclude both Hy and H; (-2InQ=0).
Possible to get outcomes that make you

pause to reconsider the modeling. Say -2InQ<-100
or -2InQ>+100
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Can make no statement about
the signal regardless of experimental
outcome.

Unlikely (or implausible) outcomes
are still possible of course!

The usual sensitivity gauge: Median Expected p, if the alternate hypothesis is true

n.b. average p-values tend to be pulled by long tails in the p-value distrib.



Sensitivity is important!

Null results are

valid scientific

results, but the test must
be sensitive for them to be
meaningful.

Quote an upper limit!
Some fields of study

(not HEP) have addressed
this by publishing only

positive results with p<0.05.

Many of these results are
not reproducible.
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DEAR MATURE MAGAZINE,

T FOUND NO EVIDENCE. SUFFICIENT TO RETJECT
THE NULL. HYPOTHESIS IN ANY RESEARCH AREAS
BECAUSE I SPENT THE WHOLE WEEK PLAYING
THE LEGEND OF ZELDA: BREATH OF THE WD

TLL SEND YOL ANOTHER UPDATE NEXT WEEK!

THE PUSH To PUBLISH NEGATIVE RESULTS SEEMS
KINDA WEIRD, BUT IM HAPPY TO GO ALONG WITH IT:
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Searching for Anything and Everything

An example from astronomy:

J. Rafael Martinez-Galarza, Harvard & Smithsonian
Finding Needles in the Haystack: Outlier Detection in Astronomical Datasets
Video at: https://events.fnal.gov/colloquium/events/event/martinez-galarza-collog-2019/

A collider example:

CDF Collab., "Global Search for New Physics" https://arxiv.org/abs/0809.3781
Phys.Rev.D79:011101,2009

Search for outliers and you will find them! With statistically limited samples of data,
you will find them even if there is no new physics to be discovered.

August 7, 2019 T. Junk Stat. Methods 83


https://events.fnal.gov/colloquium/events/event/martinez-galarza-colloq-2019/
https://arxiv.org/abs/0809.3781

Also called "Cherry Picking" and "p-Hacking"

https://xkcd.com/882/

L 4

WE FOUNDNO WE FOUNDNO WE FOUNDNO WE FOUND A WE FOUNDNO
UNKBEWEEN || UNKGEWEEN || UNKGEWEEN | [ LUNKGEWEEN | | LINK GEVEEN
GREY JELY TAN JEUY OfAN Jeuy GREEN JELY MAUVE JELY
BEANS AND ANNE BEANS AND ANE BEANS AND ANNE BEANS AND ANNE BEANS AND ANE
(P>005). (P>0.05). (P>005), (P<0.05), (P>0.05).

/ / / ot /

WE FOUNDNO WE FOUNDNO WE FONDNO WE FOUNDNO WE. FOUNDNO

UNKBEWEEN || UNKBEWEEN | [ UNKBEWEEN || UNKGEWEEN | [ LINK GEWEEN

BEIGE JELLY LA JEWY BLACK JELLY PEACH JeELLY ORANGE JELLY

BEANS AND ANNE BEANS AND ANE BEANS AND ANNE BEANS AND ANNE BEANS AND ANNE

(P>005). (P>005). (P>005). (P>005). (P>005).

/ / / / /

JELLY BEANS WE FOUND NO THAT SETILES THAT.
CAUSE ACNE! LINK BETWEEN :
T HEAR ITS ONLY
SCENTISTS! TELLY BEANS AND o CERTAN cgwsz
1NVESﬂGATE' AE (P> 0.05) THAT CAUSES IT:
BUT WERE \
mm SCIENT' STS
sz mumtamﬁ'

WE. FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO

LINK BETWEEN LINK BETWEEN LINK BETWEEN LINK BETWEEN LINK BETWEEN

PURPLE JELLY BROWN JELLY PINK JELLY BWE JEuY TEAL JELLY

BEANS AND ACNE BEANS AND ACNE BEANS AND ACNE BEANS AND ACNE BEANS AND ACNE

(P>0.05). (P>0.05) (P>0.05). (P>0.05). (P>0.05).

/ / / / /
WE. FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO
LINK BETWEEN LINK BETWEEN LINK BETWEEN LINK BETWEEN LINK BETWEEN
SALMON JeLY RED Jewy TURGUOISE JELLY | | MAGENTA JELLY YEWOow Jewy
BEANS AND ACNE BEANS AND ANE BEANS AND ACNE BEANS AND ACNE BEANS AND ACNE
(P>0.05). (P>0.05). (P>0.05). (P>0.05). (P>0.05).
/ / / / /
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Look-Elsewhere

Multiple Independent Tests, each with a specified Type-1 Error Rate (false signal),
ought to produce Errors at the specified rate (or they aren’t powerful enough, or the
error rate can be claimed to be lower).

A single analysis can involve many multiple tests. Classic example: A bump-hunt on
a histogram.

Old-fashioned way to handle it (Bonferroni) — multiply p-value by the
number of independent tests.

Better and just as easy: Dunn-Sidak Correction

e Given m different null hypotheses and a familywise alpha level of «,
each null hypotheses is rejected that has a p-value lower than

1
OASID:].—(].—C!)H.

From Wikipeida. Sometimes it isn't exactly clear what m is.
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Where is “Elsewhere?”

A collider collaboration is typically very large; >1000 Ph.D. students.
DUNE has more than 1000 physicists, and there are many neutrino experiments.

Many ongoing analyses for new physics. The chance of seeing a statistical fluctuation that
looks like new physics somewhere is large. What is the LEE?

Do we have to correct our previously published p-values for a larger LEE when we add
new analyses to our portfolio?

How about the physicist who goes to the library and hand-picks all the largest excesses?
What is LEE then?

“Consensus” at the Banff 2010 Statistics Workshop: LEE should correct only for those
models that are tested within a single published analysis. Usually one paper covers one
analysis, but review papers summarizing many analyses do not have to put in additional
correction factors.

Caveat lector.



Running averages LOOk EISEWH EN

converge on
correct answer, but the
deviations in units of the
expected uncertainty have 15
a random walk in the
logarithm of the number of
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Trial Number

It’s possible to cherry-pick a dataset with a
maximum deviation. “Sampling to a foregone conclusion”

Stopping Rule: In HEP, we (almost always!) take data until our money is gone. We produce results for the major conferences
along the way. Some will coincidentally stop when the fluctuations are biggest. We take the most recent/largest data sample
result and ignore

(or should!) results performed on smaller data sets. p-values still distributed uniformly from 0 to 1. A recipe for generating

“effects that go away”
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Packaging Results for Future Use

Particle physicists have been quite bad at this. Mostly because our criteria
for success are so stringent.

We spend huge amounts of money and effort building and running
experiments, and do a great job extracting results.

But future physicists may discover a problem in the modeling (detector,
physics in MC models, parameter values assumed, etc.)

Re-performing an experiment can be prohibitive.

Data presented in papers may be corrected using erroneous models.
 Sometimes one has to uncorrect and recorrect the old results
* happens all the time in mining old publications for inputs to parton distribution
functions
* Also happens in experimental neutrino data

Uncorrected data may lack enough explanation of experimental details



Packaging Results for Future Use

Goals of documentation for future readers
e Should be able to reproduce your result
e Should be able to combine your result with other experiment's data
 The systematic uncertainties and correlations are always the hard part!
* Should be able to change model assumptions and arrive at new results.
e A systematic uncertainty that used to be BAD or UGLY may now be GOOD

Newer technologies help a lot:

http://hepdata.net

(hepdata.com is something else entirely)

Shared tools: ROOFIT, ROOSTATS, RECAST

APS Journals allow submission of supplemental data.

DOE now requires a "data management plan" which includes standards for

preserving data in machine-readable format. At the very least, data shown in published
plots must now be made machine readable.


http://hepdata.net/

Packaging Results for Future Use

This is all great, but the real issue with preserving data is preserving analysis
techniques and software, and handling of systematic uncertainties and correlations.

Calibrations must be applied to data (and MC), and sometimes ad hoc corrections
are needed to get the most out of a data set.

Future non-collaborators may get their hands on your data and make false discoveries,
or just discoveries that a particular part of the detector wasn't working part of the time.

In collider physics, each grad student may need and develop a tiny tweak to a calibration
that only he or she needs. In neutrino physics, there are fewer analyses, and thus all
tweaks need to be mainstreamed.



Blind Analysis Procedures

Validate analysis as much as possible with simulation and control sample data
Collaboration sign-off on the analysis without looking at signal-region data

Data are “unblinded” (or hidden offsets revealed)

A hard-line approach: Collaboration must approve the unblinded result and submit for
publication, even if it contains mistakes that are obvious only when the signal region
data are investigated.

“Blind”, not “deaf and dumb”: Allow review of possible mistakes. But then we’re not
really blind, are we?

A practical concern: One analysis group’s calibration sample is another’s signal sample!
They can accidentally unblind each other!
Do we need to keep people out of each others’ meetings?

Collaboration by-laws usually prohibit denying access to data or to analysis meetings.
Usually a “good-faith effort”



Summary

Statistical treatment in HEP is getting better each year
Powerful tools exist that cover many use cases.
Documentation is also quite good

But: Some calculations are prohibitively expensive when

done "by the book" e.g. 50 sensitivities.

Many methods you might come across are approximations
designed to get close to a result that is otherwise difficult to compute
Knowing a priori the distribution of a test statistic helps avoid
the need to throw lots of toy experiments.

Often these approximations break down, and often in the cases
we are most interested in for neutrino physics.

If something seems fishy, it probably is.

Talk to experts if you need help! Especially when starting your
analysis, or designing your experiment. Not right before your
paper or thesis deadline!



Extras



xkcd.com

DID You SEE THE
NEUTRINO SPEED
OF LIGHT THING?

HOH? Chs?

3

YUP! GOOD NEWS;
I NEED TriE CASH.

YEAH. WHEN THERE'S A NEWS STORY
ABOUT A STUDY OVERTURNING ALL
OF PHYSICS, T USED To URGE
CAUTICN, REMIND PEOPLE THAT EXPERTS
AREN'T ALL STUPID, AND END P IN
POINTLESS ARGUMENTS ABOUT GALILED.

NO, THIS 1SNT Aoy

WHETHER RELATV

X518, an&o&T

YouR 6PS VORK. \
WHAT DO Yoo MEAN

Qg, %1 ENCE THOUGHT FOUCE?

y = HAVE YOU SEEN O BUDGET?

VE (ouON'T &G T AFFORD
OUR owow THOUGHT FOLICE -

THAT SOUNDS MISERABLE

AND UNFOLFILLNG.

Yup S0 I GAVE UP AND NoW T
JUST FIND EXCITED BELEVERS

AND BET THEM $200 £ACH THAT
THE NEW RESULT WONT PAN OUT.

o/

THATS MEAN.
IT PROVIDES A GO INCOVME,
AND [F TA EVER WRONG, TLL BE

™0 EXCITED AROUT THE NEW
PHYSICS TO NOTICE THE (0SS.

@O)

Stephen Hawking was famous for making bets he was happy to lose.
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Treatment of Asymmetric Uncertainties

These cases are pretty clear — the underlying parameter, the energy scale, has a
(Gaussian? Your choice) distribution, while it has a nonlinear, possibly non-monotonic
impact on the model prediction.

The same parameter may have a linear, symmetrical impact on another model prediction,
and we will have to treat them as correlated in statistical analysis tools.

Treatment is ambiguous when little is known why the uncertainties are
asymmetric, or it is not clear how to extrapolate/interpolate them.

See R. Barlow,

“Asymmetric Systematic Errors”, arXiv:physics/0306138
“Asymmetric Statistical Errors”, arXiv:physics/0406120
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Quadratic Impacts of Asymmetric Uncertainties
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Resulting Prior Distributions for alternative handling of Asymmetric Impacts
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Integrating over Systematic Uncertainties Helps
Constrain their Values with Data

Nuisance parameters: v
Parameter of Interest: r

Example: suppose we have

a background rate prediction
that’s 50% (fractionally) uncertain
-- goes into m(v). Butonly a
narrow range of background rates
contributes significantly to the

integral. The kernel falls to zero rapidly

outside of that range.
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Can make a posterior probability distribution for the background too --

narrow belief distribution.
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Asymmetric Uncertainties and Priors

Measurements, and even theoretical calculations, frequently are assigned
asymmetric uncertainties:

Value = 10*2;, or more extremely, 10*2,, (ouch). When the uncertainties have the
same sign on both sides, it is worthwhile to check and see why this is the case.

CDF II 220 pb”’
. . . . . 6000
Example — we seek a bump in a mass distribution by counting izgz
events in a small window around where the bump is sought. 50001 | 2100 };*‘;
o 1 2000f 4. Wt \un 4 |
. . . 240000 1 qgeopr T T
The detector calibration has an energy uncertainty = b
. . . by 380 385 390 395
(magnetic field or chamber alignment for tracks, 0%
or much larger effect, calorimeter energy scales for jets). %2000 R
@] J e
. L . . 1000] X(3872)
Shift the calibration scale up — predicted peak shifts out of the

window = downward shift in expected signal prediction. 0
3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00

Jlun*n Mass (GeV/c?)

Shift the calibration down — predicted peak shifts out of the other
side of the window = downward shift in expected signal prediction
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Hypothesis Testing

e p-values

e Coverage and Power

e Test Statistics and Optimization

* |ncorporating Systematic Uncertainties

« Multiple Testing (“Look Elsewhere Effect”)

Thus the unfacts, did we possess them, are too imprecisely few to warrant our certitude...
J. Joyce, Finnegan’s Wake



Another Bump That Went Away

A preliminary set of distributions shown at a LEPC presentation

/’q
llqq events at LEP2 4 |igq events at LEP2 @

m DELPHI has more than 400 pb! collected at LEP2
m Check of the mass spectrum: *Excess in eeqq, when qu~MZ: check Mee

DELPHI PRELIMINARY DELPHI PRELIMINARY
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DELPHI Status Report 21 M" (With qu in 7 region)

- DELPHI Status Report 22

Benefit of having four LEP experiments — at the very least, there’s more data.
This one was handled very well — cross checked carefully.

But, they shared models — Monte Carlo programs, and theoretical calculations.
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The Literature is Full of Bumps that Went Away

See Sheldon Stone, “Pathological Science”, hep-ph/0010295

My personal favorite is the “Split A, resonance”
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" [ " MISSING MRS (]
e ulM& NE oo FITS TOTHE TOTAL(MMS<CBS)IAZ DATA

Figure 3: (a~c) Evidence for A2 splitting in #~p — pX ~ collisions in the two CERN exper-
iments, (d) same as (c) in 5 MeV bins fit to two hypotheses.

Text from Sheldon’s article:

How did this happen? I have heard several possible explanations. In the
MMS experiment, I was told that they adjusted the beam energy so the dip
always lined up! Another possibility was revealed in a conversation I had with
Schiibelin, one of the CBS physicists. He said: “The dip was a clear feature.
Whenever we didn’t see the dip during a run we checked the apparatus and
always found something wrong.” I then asked him if they checked the apparatus
when they did see the dip, and he didn’t answer.

What about the other experiments that did see the dip? Well there were
several experiments that didn’t see it. Most people who didn’t see it had less
statistics or poorer resolution than the CERN experiments, so they just kept
quiet. Those that had a small fluctuation toward a dip worked on it until it
was publishable; they looked at different decay modes or ¢ intervals, etc. (This
is my guess.)
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At Least ALEPH Explained What They Did

“the width of the bins is
designed to correspond to twice
the expected resolution ... and
their origin 1s deliberately chosen
to maximize the number of
events found in any two
consecutive bins”

LEP ended up running a little extra
at 130 GeV to collect more data
to test this hypothesis.
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ALEPH Collaboration, Z. Phys. C71, 179 (1996)
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Dijet mass sum in e"e™—jjjj

M (GeV/c?)
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A More Sophisticated Test Statistic

What if you have two or more

>
bins in your histogram? Not B 012 @ Observed  me 115 GeV/E
just a single counting experiment § I Expeted for background
any more. 3} plus background .
E 008 | > .
Still want to rank outcomes as more 8 signal-like - Jbackground-like
signal-like or less signal-like E"-"E) utcomes | outcom‘__l.es
0.04 -
Neyman-Pearson Lemma (1933): The .
likelihood ratio is the “uniformly 0.02 1
most powerful” test statistic i S - |
-15 10 5 0 5 10 15
-2 In(Q)
L(dataIHl , V) yeIIow_=p—vaIue
2InQ=LLR=-21n ~ for ruling out
L(datalH,,v) Ho Green=
p-value for ruling
out H;

Acts like a difference of Chisquareds in the Gaussian limit

2InQ — Ay’ = x’(data | H,) - x*(data | H )



A\

What’s with 17 and 1/} ?
L(datalH,,v)

—2InQ=LLR=-2In .
L(datal H,,v)

We parameterize our ignorance of the model predictions
with nuisance parameters.

A model with a lot of uncertainty is hard to rule out!

-- either many nuisance parameters, or one parameter
that has a big effect on its predictions and whose
value cannot be determined in other ways

A . .
V maximizes L under H,

A\
A . .
V maximizes L under H,



What’s with yyand ¢ ?

A simple hypothesis is one for which the only free
parameters are parameters of interest.

A compound hypothesis is less specific. It may have
parameters whose values we are not particularly
concerned about but which affects its predictions.
These are called nuisance parameters, labeled v.

Example: H,= Normal Mass Ordering. H;= Inverted Mass Ordering.
Both make predictions about what may be seen in an experiment.
A nuisance parameter would be, for example, the beam flux.

It affects the predictions but in the end of the day we

are really concerned about H, and H,.



30 T

15

10

Fit twice! Once assuming H,, once assuming H,

Example: flat background, 30 bins, 10 bg/bin, Gaussian signal.
Run a pseudoexperiment (assuming s+b).

Fit to flat bg, Separate fit to flat bg + known signal shape.

The background rate is a nuisance parameter v ="b

Use fit signal and bg rates to calculate Q.

Fitting the signal is a separate option.

:

M |
i
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p-values and -2InQ

p-value for testing H, = p(-2InQ < -2InQ | Hy)
The yellow-shaded area to the right.

The “or-equal-to” is important here. For highly
discrete distributions of possible outcomes —
say an experiment with a background rate of
0.01 events (99% of the time you observe zero
events, all the same outcome), then observing
0 events gives a p-value of 1 and not 0.01.

Shouldn’t make a discovery with 0 observed events,
no matter how small the background expectation!
(or we would run the LHC with just one bunch

crossing!).

N

Probability density

0.12

0.02

This p-value is often called “1-CL,” in HEP. (apologies for the

notation! It’s historical)

CL, = p(-2InQ 2 -2InQ,, | H,)

Due to the “or equal to”’s (1-CL,) + CL, # 1
T. Junk Stat. Methods
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T

T

(a) LEP
—— Observed my =115 GeV/c?
------- Expected for background

- Expected for signal
plus background

15 10 -5 0 5 10 15

0,16

0,14

0,12 ¢

0,10 +

0,08 +

0,06 +

0,04 +

0,02 +

0,00 A

0 2 4 6 8 101214 16 18 20 22 24

For an experiment producing a single
count of events all choices of test
statistic are equivalent. *Usually*

more events = more signal-like.
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likelihood ratio

LLR Is not only used in Search Contexts — Precision Measurements too!
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Power

The Type-I| Error Rate is a or less for a method that covers. But | can cover with an analysis
that just gives a random outcome —in a of the cases, reject H,, and in 1-a of the cases,
do not reject H,,.

But we would like to reject H; when it is false.
The quoted Type-Il error rate is usually given the symbol B (but some use 1-f).

For excluding models of new physics, we typically choose B=0.05, but sometimes 0.1 is used
(90% CL limits are quoted sometimes but not usually in HEP).

Classical two-hypothesis testing (not used much in HEP, but the LHC may lean towards it).

H, is the null hypothesis, and H; is its “negative”. We know a priori either H, or H; is true.
Rejecting H, means accepting H; and vice versa (n.b. not used much in HEP)

Example: H,: The data are described by SM backgrounds
H,: There is a signal present of strength u>0. Can also be pu#0 but most
models of new physics add events. (Some subtract events! Or add
in some places and subtract in others!! )



The Classical Two-Hypothesis Likelihood Ratio

Distinguishing between p=0 (zero signal, SM, Null Hypothesis) and u>0 (the test hypothesis)

Assumption Warning! A M is the bt.ast—fit value
Signal rates scale with ~21n L(dataI/,z, V) of the signal rate.
y =

i m ~ Can be zero. Your
a single parameter p A
L(data | U, V) choice to allow it to

g0 negative.

W is quadratically dependent on
coupling parameters (or worse. More on this later).

Larger qg is more signal-like
UCRD) med]q,lu’]
f Goos | f(q,lw)

/ o-value q,>0 always because H,
is a superset of H, and
therefore always fits
at least as well.

q.u
ATLAS performance projections, CERN+QREN-2008-020 111
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Wilks’s theorem

If the true value of the signal rate is given by u, then q,, is distributed according
to a x? distribution with one degree of freedom.

Assumptions: Underlying PDFs are Gaussian (this is never the case)

Systematic uncertainties also complicate matters. If a systematic uncertainty

which has no a priori constraint can fake a signal, then there is no sensitivity
in the analysis.

Example: data = signal + background, single counting experiment.
If the background is completely unknown a priori, there is no way to make any
statement about the possibility of a signal. So q,=0 for all outcomes for all p.

Poisson Discreteness also makes Wilkes’s theorem only approximate.
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@ @ | anas

T T T T
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q
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ATLAS performance projections, CERN-OPEN-2008-020

Figure 8: The distribution of the test statistic g for H 4+0j — WW + 0, under the background-only hypothesis,
with the same fixed QCD WW shape parameters used at both the generator and the fit level, for my = 150 GeV
and for an integrated luminosity of 10 fb~! (a) with the same shape parameters for event generation and fitting; (b)

with altered shape parameters. A % X12 distribution is superimposed.
AUBUDL /7, V1T
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The “Asimov” Approximation for Computing
Median Expected Sensitivity

We seek the median of some distribution, say a p-value or a limit (more on limits later).

* CPU constraints computing p-values, limits, and cross sections

* Need quite a few samples to get a reliable median. Usually many thousands.

* | use the uncertainty on the mean to guess the uncertainty on the median (not true
for very discrete or non-Gaussian distributions

O, =RMS/~n-1

* Often have to compute median expectations many times when optimizing an analysis
But: The median of a distribution is the entry in the middle.

Let’s consider a simulated outcome where data = signal(pred)+background(pred),
and compute only one limit, p-value, or cross section, and call that the median
expectation.

Named after Isaac Asimov’s idea of holding elections by having just one voter, the “most typical one”
cast a single vote, in the short story Franchise.

August 7, 2019 T. Junk Stat. Methods 113
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A Case in which the Asimov Approximation Breaks Down

Usually it’s a very good approximation.

Poisson discreteness can make it break down, however.

Example: signal(pred)=0.1 events, background(pred)=0.1 events.
The median outcome is O events, not 0.2 events.

In fact, 0.2 events is not a possible outcome of the experiment at all!

For an observed data count that’s not an integer, the Poisson probability must be
generalized a bit (seems to work okay):

r'e”’

- (n,r)y=——
pPozss( ) r(l’l + 1)
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Some Comments on Fitting

e Fitting is an optimization step and is not needed for
correctly handling systematic uncertainties on nuisance
parameters.

More on systematics later

e Some advocate just using -2InQ with fits as the final
step in quoting significance (Fisher, Rolke, Conrad, Lopez)

e But we do not know the distribution from which the data fit is
drawn — could have gotten “lucky” or not.

e Fits can “fail” -- MINUIT can give strange answers
(often not MINUIT’s fault). Good to explore distributions
of possible fits, not just the one found in the data.



Incorporating Systematic Uncertainties into the p-Value

Two plausible options:
“Supremum p-value”

Choose ranges of nuisance parameters for which the
p-value is to be valid

Scan over space of nuisance parameters and calculate the
p-value for each point in this space.

Take the largest (i.e., least significant, most “conservative”) p-value.

“Frequentist” -- at least it’s not Bayesian. Although the choice of the range

of nuisance parameter values to consider has the same pitfalls as the arbitrary choice of
prior in a Bayesian calculation.

“Prior Predictive p-value”

When evaluating the distribution of the test statistic, vary the nuisance
parameters within their prior distributions. “Cousins and Highland”
p(x)= [ p(x1v)p(v)dv
Resulting p-values are no longer fully frequentist but are a mixture of
Bayesian and Frequentist reasoning. In fact, adding statistical errors
and systematic errors in quadrature is a mixture of Bayesian and

Frequentist reasoning. But very popular. Used in ttbar discovery, single top discovery.
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Other Possible ways to Incorporate Systematic Uncertainties in P-Values

For a nice (lengthy) review, see

http://www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf

Confidence interval method
Use the data twice — once to calculate an
interval for a nuisance parameter, and a second time to compute supremum p-values

in that interval, and correct for the chance that the nuisance parameter is outside the
interval.

Hard to extend to cases with many (hundreds!) of nuisance parameters

Plug-in p-value
Find the best-fit values of the uncertain parameters and calculate
the tail probability assuming those values.

Double use of the data; ignores uncertainty in best-fit values of uncertain parameters.

Works best when the data strongly constrain the important uncertainties.
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Other Possible ways to Incorporate Systematic

Uncertainties in P-Values
Fiducial method — See Luc’s note. | do not know of a use of this in a publication

Posterior Predictive p-value

Probability that a future observation will be at least as extreme as the current
observation assuming that the null hypothesis is true.

Advantages: Uses measured constraints on nuisance parameters
Disadvantages: Cannot use it to compute the sensitivity of an experiment you have
yet to run.

In fact, all methods that use the data to bound the nuisance parameters in the
pseudoexperiment ensemble generation cannot be used to compute the
a priori sensitivity of an experiment with systematic uncertainties.

Of course the sensitivity of an experiment is a function of the true values of
the nuisance parameters.
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Look-Elsewhere Effect Comments

Generally, no LEE for limits.

BUT: Taking the union of excluded parameter spaces is not well defined (breaks
coverage. Points would have multiple chances to be excluded).

We overlay exclusion contours all the time.

LEE for p-values for sure. Bayes Factor? Question for Jim Berger

LEE depends on how many independent testable models. More dimensionality

of parameters of interest not present on the null, the larger the LEE

Example: LEP MSSM Higgs search — multiple small excesses. Theorists found models to
predict them all simultaneously, did not compute LEE.

LEE when most of the model space has been excluded already?

Not all dimensions are created equally. (delta msquared, sin*2 theta)



“On-Off” Example

Select events with J/P(=21l) m*rt candidates. Lots of nonresonant background

whichis poorly understood a priori, but there’s a /ot of it.
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Guess a shape that fits the backgrounds, and fit it with a signal.
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Typical strategy:
Fit the background
outside of the
signal peak,

and interpolate
the background
under the signal
to subtract

it off.

The ratio of events
in the sidebands

to the background
prediction under
the signal is called t
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“Weak” Sideband Constraints

~ 6
< L b (a)
2R 0 L o o n” H]nrmn
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FIG. 8: (a,b) The invariant mass distribution of J/ Q™
combinations for candidates where the transverse flight re-
quirement of the Q~ is greater than 0.5 cm and 2.0 cm. (c)
The invariant mass distribution of J/% Q™ combinations for
candidates with at least one SVXII measurement on the (2™
track. All other selection requirements are as in Fig. 5(c).
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No Sideband Constraints?

Example: Counting experiment, only have a priori predictions of expected
signal and background

All test statistics are equivalent to the event count — they serve to order outcomes
as more signal-like and less signal-like. More events == more signal-like.

Classical example: Ray Davis’s Solar Neutrino Deficit observation. Comparing

data (neutrino interactions on a Chlorine detector at the Homestake mine) with a model
(John Bahcall’s Standard Solar Model). Calibrations of detection system were

exquisite. But it lacked a standard candle.

How to incorporate systematic uncertainties? Fewer options left.

Another example: Before you run the experiment, you have to estimate
the sensitivity. No sideband constraints yet (except from other experiments).
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“ABCD” Methods

CDF’s W Cross Section Measurement

Electron

W
B

, Iso4 vs Met
1.8 f_A _ : C CDF Run Il Preliminary
— ’ : -1
_ 18[ fL ~72 pb
S 1.4 o
§ 1.2 ; S QCD Background _ B solation fraction=
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= 0.8 ; Energy in a cone of
o 068 e o . radius 0.4 around
@D g4 g W_’/‘-' v C.a"d'dates lepton candidate
o not including the
B " R ik lepton candidate /
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Energy of lepton

Want QCD contribution to candidate
the “D” region where signal
i< selectedg & ABCD methods are
really just on-off
Assumes: MET and ISO are uncorrelated sample by sample methods where
Augg,;gﬂ%ggmtribution to A,B, and C are;small.and,subtractable T is measured using

data samples



o “ABCD” Methods
vantages

e Purely data based, good if you don’t trust the simulation
* Model assumptions are injected by hand and not in

a complicated Monte Carlo program (mostly)
* Model assumptions are intuitive

Disadvantages

* The lack of correlation between MET and ISO assumption may be false.
e.g., semileptonic B decays produce unisolated leptons and MET from the
neutrinos.
* Even a two-component background can be correlated when the contributions aren’t
by themselves.
* Another way of saying that extrapolations are to be checked/assigned sufficient
uncertainty
* Works best when there are many events in regions A,B, and C. Otherwise all the
problems of low stats in the “Off” sample in the On/Off problem reappear here.
Large numbers of events = Gaussian approximation to uncertainty in background in D
* Requires subtraction of signal from data in regions A, B, and C = introduces
model dependence
* Worse, the signal subtraction from the sidebands depends on the signal rate
being measured/tested.
- A small effect if s/b in the sidebands is small
—> You can iterate the measurement and it will converge quickly
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The Sum of Uncorrelated 2D Distributions may be Correlated

4
L

Knowledge of one variable helps identify which sample the event came from
and thus helps predict the other variable’s value even if the individual samples

have no covariance.
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An mternal CDF study that didn’t make it to prime time

— dimuon mass spectrum with signal fit
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249.7160.9 events fit in bigger
signal peak (4c? No!)
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(not enough PE’s)

Significance Tests on the Dimuon Mass Bump
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A Useful Tip about Limits

It takes almost exactly 3 expected signal events to exclude a model.

If you have zero events observed, zero expected background, then the limit will
be 3 signal events.

0_
re’

0!

-r

=€

pPoiss(n = 0,7") =

If p=0.05, then r=-In(0.05)=2.99573

You can discover with just one event and very low background, however!
Example: The Q discovery with a single bubble-chamber picture.

Cut and count analysis optimization usually cannot be done simultaneously
for limits and discovery.

But MVA'’s take advantage of all categories of s/b and remain optimal in both cases;
but you have to use the entire MVA distribution
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Extending Our Useful Tip About Limits

It takes almost exactly 3 expected signal events to exclude a model.

If you have zero events observed, zero expected background, and no
systematic uncertainties, then the limit will be 3 signal events.

Call s=expected signal, b=expected background. r=s+b is the total prediction.

0 -
re’

0!

C o = )

L(n=0,r)=
[ L'(data\r)m(r)dr s+
0.95 =L = ¢
f L'(data|r)m(r)dr ~€ ‘o
0

Him

The background rate cancels! For O observed events, the signal limit does not
depend on the predicted background (or its uncertainty). This is also
true for CL, limits, but not PCL limits (which get stronger with more background)

If p=0.05, then r=-In(0.05)=2.99573
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Rule of three

From Wikipedia, the free encyclopedia

Rule of three may refer to:

Science and technology | edit]

¢ Rule of three (C++ programming), a rule of thumb about class method definitions

Rule of three

Other [edit]

(
(
(
(
(

Rule of three (computer programming), a rule of thumb about code refactoring

mathematics), a method in arithmetic

Rule of three (medicinal chemistry), a rule of thumb for lead-like compounds
Rule of three (statistics), for calculating a confidence limit when no events have been observed

@

¢ Rule of three (aviation), a rule of descent in aviation

Rule of three (economics), a rule of thumb about major competitors in a free market

Rule of Three (Wicca), a tenet of Wicca
Rule of three (writing), a principle of writing
Rule of Three, a series of one-act plays by Agatha Christie

The Bellman's Rule of Three in The Hunting of the Snark, a poem by Lewis Carroll

See also [edit]

Rule of threes (survival), a quick reference for how long one can survive in an emergency situation

e Three-sigma rule, for a normal distribution in statistics

Triumvirate, a political regime dominated by three powerful individuals

Rule of thirds, a compositional rule of thumb in photography

Rule of thirds (diving), a rule of thumb for scuba divers

Rule of thirds (military), a rule of thumb regarding the distribution of available manpower



Ambiguous or Missing Data

A “Unicorn”
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