# **Solar and Reactor Neutrinos**

Joachim Kopp | CERN & JGU Mainz | Lectures at INSS 2019, Fermilab







JOHANNES GUTENBERG UNIVERSITÄT MAINZ



# **Solar Neutrinos**







JOHANNES GUTENBERG UNIVERSITÄT MAINZ









#### **Stellar Evolution Equations**

$$\begin{aligned} \frac{\partial r}{\partial m} &= \frac{1}{4\pi r^2 \varrho} ,\\ \frac{\partial P}{\partial m} &= -\frac{Gm}{4\pi r^4} ,\\ \frac{\partial l}{\partial m} &= \varepsilon_{\rm n} - \varepsilon_{\nu} - c_P \frac{\partial T}{\partial t} + \frac{\delta}{\varrho} \frac{\partial P}{\partial t} ,\\ \frac{\partial T}{\partial m} &= -\frac{GmT}{4\pi r^4 P} \nabla ,\\ \frac{\partial X_i}{\partial t} &= \frac{m_i}{\varrho} \left( \sum_j r_{ji} - \sum_k r_{ik} \right) , \quad i = 1, \dots, I . \end{aligned}$$



















#### Stellar Evolution Equations











#### Stellar Evolution Equations











#### Stellar Evolution Equations

$$\begin{aligned} \frac{\partial r}{\partial m} &= \frac{1}{4\pi r^2 \varrho} ,\\ \frac{\partial P}{\partial m} &= -\frac{Gm}{4\pi r^4} ,\\ \frac{\partial l}{\partial m} &= \varepsilon_n - \varepsilon_v - c_P \frac{\partial T}{\partial t} \end{aligned} \qquad \begin{array}{l} \text{Thermal Structure} \\ \text{(change in temperature across a mass shell is related to equation of state} \\ \Delta &= d \ln T / d \ln P ) \end{aligned} \\ \frac{\partial T}{\partial m} &= -\frac{GmT}{4\pi r^4 P} \nabla ,\\ \frac{\partial X_i}{\partial t} &= \frac{m_i}{\varrho} \left( \sum_j r_{ji} - \sum_k r_{ik} \right) , \quad i = 1, \dots, I . \end{aligned}$$









#### **Stellar Evolution Equations**

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \varrho} ,$$

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} ,$$

$$\frac{\partial l}{\partial m} = \varepsilon_n - \varepsilon_\nu - c_P \frac{\partial T}{\partial t} + \frac{\delta}{\varrho} \frac{\partial P}{\partial t}$$
Evolution of Mass Fraction of different species
$$\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla ,$$

$$\frac{\partial X_i}{\partial t} = \frac{m_i}{\varrho} \left( \sum_j r_{ji} - \sum_k r_{ik} \right) , \quad i = 1, \dots, I .$$









#### **Stellar Evolution Equations**

$$\begin{aligned} \frac{\partial r}{\partial m} &= \frac{1}{4\pi r^2 \varrho} ,\\ \frac{\partial P}{\partial m} &= -\frac{Gm}{4\pi r^4} ,\\ \frac{\partial l}{\partial m} &= \varepsilon_{\rm n} - \varepsilon_{\nu} - c_P \frac{\partial T}{\partial t} + \frac{\delta}{\varrho} \frac{\partial P}{\partial t} ,\\ \frac{\partial T}{\partial m} &= -\frac{GmT}{4\pi r^4 P} \nabla ,\\ \frac{\partial X_i}{\partial t} &= \frac{m_i}{\varrho} \left( \sum_j r_{ji} - \sum_k r_{ik} \right) , \quad i = 1, \dots, I . \end{aligned}$$









- Stellar Evolution Equations
  - O Solve numerically on discretized grid
  - **O** Additional complication: convection
- **M** Requires input parameters / boundary conditions
  - O total mass
  - O surface temperature
  - O initial chemical composition
- Most relevant output for neutrino physics
  - **O** Core temperature *T*<sub>core</sub>
  - **O** Neutrino flux depends on the  $25^{\text{th}}$  power of  $T_{\text{core}}!$









5

# Helioseismology



Meed tool to verify solar models

# Melioseismology

- O Study oscillation modes of the Sun
- **O** Generated in the convective zone
- Observed via Doppler shift of spectral lines
- Oscillation modes depend on the Sun's internal structure, so they allow us to learn about the latter



Image from <a href="http://soi.stanford.edu/results/heliowhat.html">http://soi.stanford.edu/results/heliowhat.html</a>











# **Predicted Solar Neutrino Flux**



Image by John Bahcall









# **Reactor Neutrinos**







JOHANNES GUTENBERG UNIVERSITÄT MAINZ



## **Predicting the Reactor Neutrino Spectrum**

## Method:

Mueller et al. <u>1101.2663</u>, Huber <u>1106.0687</u>

- **O** Use measured  $\beta$  spectra from <sup>235</sup>U, <sup>238</sup>U, <sup>239</sup>Pu, <sup>241</sup>Pu fission
- **O** Convert to  $\overline{v}_e$  spectrum
- **O** For single  $\beta$  decay:  $E_v = Q E_e$

$$\frac{dN_{\nu}(E_{\nu})}{dE_{\nu}} \equiv \frac{dN_e(Q - E_e)}{dE_e}$$

- For energy-independent nuclear matrix elements: simple phase space argument
  - $dN_{\nu} \propto d^{3}p_{e} d^{3}p_{\nu} \,\delta(E_{e} + E_{\nu} Q)$   $\propto p_{e}^{2}dp_{e} \,p_{\nu}^{2}dp_{\nu} \,\delta(E_{e} + E_{\nu} - Q)$   $= p_{e}E_{e} \,p_{\nu}E_{\nu}dE_{\nu}$  $= \sqrt{(Q - E_{\nu})^{2} - m_{e}^{2}} \left(Q - E_{\nu}\right) E_{\nu}^{2} \,dE_{\nu} \,.$









### **Corrections to the Reactor v Spectrum**

# **Solution** Fermi function $F(A, Z, E_v)$

- O describes interactions of final state electron with Coulomb field of the nucleus
- Screening of the nuclear charge by bound electrons
- Mon-zero nuclear radius
- $\checkmark$  Final state radiation:  $(A, Z) \rightarrow (AA, Z+1) + e^- + \overline{v}_e + \gamma$
- Approximation of energy-independent nuclear matrix elements valid only for allowed beta decays









Weak Magnetism: impact of finite nuclear size on weak interactions

**O** Weak interaction vertex:

$$\mathcal{L}_{\text{weak}} \supset \frac{g}{\sqrt{2}} J^{\mu}_{W} W_{\mu} + h.c.$$

with the weak current

$$J^{\mu}_{W,\text{point-like}} = \bar{u}\gamma^{\mu}\frac{1-\gamma^{5}}{2}d$$

$$J_{W,\text{extended}}^{\mu} = \bar{u} \left[ c_V(q^2) \gamma^{\mu} + c_A(q^2) \gamma^{\mu} \gamma^5 + F_2(q^2) \frac{i \sigma^{\mu\nu} q_{\nu}}{2M} \right] d,$$









Weak Magnetism: impact of finite nuclear size on weak interactions

• Weak interaction vertex:

$$\mathcal{L}_{\text{weak}} \supset \frac{g}{\sqrt{2}} J^{\mu}_{W} W_{\mu} + h.c.$$

with the weak current

$$J^{\mu}_{W,\text{point-like}} = \bar{u}\gamma^{\mu}\frac{1-\gamma^{5}}{2}d$$

 ${\ensuremath{ \textbf{O}}}$  For non-pointlike objects, extra terms and form factors appear

$$J^{\mu}_{V,\text{extended}} = \left[ c_{V}(q^{2})\gamma^{\mu} + c_{A}(q^{2})\gamma^{\mu}\gamma^{5} + F_{2}(q^{2})\frac{i\sigma^{\mu\nu}q_{\nu}}{2M} \right] d,$$
**reak vector charge**
Fermi form factor
$$I3 \quad ICH$$

Weak Magnetism: impact of finite nuclear size on weak interactions

**O** Weak interaction vertex:

$$\mathcal{L}_{\text{weak}} \supset \frac{g}{\sqrt{2}} J^{\mu}_{W} W_{\mu} + h.c.$$

with the weak current

$$J^{\mu}_{W,\text{point-like}} = \bar{u}\gamma^{\mu}\frac{1-\gamma^{5}}{2}d$$

$$J_{W,\text{extended}}^{\mu} = \bar{u} \left[ c_V(q^2) \gamma^{\mu} + c_A(q^2) \gamma^{\mu} \gamma^5 + F_2(q^2) \frac{i \sigma^{\mu\nu} q_{\nu}}{2M} \right] d,$$









Weak Magnetism: impact of finite nuclear size on weak interactions

• Weak interaction vertex:

$$\mathcal{L}_{\text{weak}} \supset \frac{g}{\sqrt{2}} J^{\mu}_{W} W_{\mu} + h.c.$$

with the weak current

$$J_{W,\text{point-like}}^{\mu} = \bar{u}\gamma^{\mu}\frac{1-\gamma^{5}}{2}d$$

$$J_{W,\text{extended}}^{\mu} = \bar{u} \left[ c_V(q^2) \gamma^{\mu} + c_A(q^2) \gamma^{\mu} \gamma^5 + F_2(q^2) \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} \right] d,$$
  
weak axial charge  
Gamow-Teller form factor









Weak Magnetism: impact of finite nuclear size on weak interactions

**O** Weak interaction vertex:

$$\mathcal{L}_{\text{weak}} \supset \frac{g}{\sqrt{2}} J^{\mu}_{W} W_{\mu} + h.c.$$

with the weak current

$$J^{\mu}_{W,\text{point-like}} = \bar{u}\gamma^{\mu}\frac{1-\gamma^{5}}{2}d$$

$$J_{W,\text{extended}}^{\mu} = \bar{u} \left[ c_V(q^2) \gamma^{\mu} + c_A(q^2) \gamma^{\mu} \gamma^5 + F_2(q^2) \frac{i \sigma^{\mu\nu} q_{\nu}}{2M} \right] d,$$









Weak Magnetism: impact of finite nuclear size on weak interactions

• Weak interaction vertex:

$$\mathcal{L}_{\text{weak}} \supset \frac{g}{\sqrt{2}} J^{\mu}_{W} W_{\mu} + h.c.$$

with the weak current

$$J^{\mu}_{W,\text{point-like}} = \bar{u}\gamma^{\mu}\frac{1-\gamma^{5}}{2}d$$

Weak Magnetism: impact of finite nuclear size on weak interactions

**O** Weak interaction vertex:

$$\mathcal{L}_{\text{weak}} \supset \frac{g}{\sqrt{2}} J^{\mu}_{W} W_{\mu} + h.c.$$

with the weak current

$$J^{\mu}_{W,\text{point-like}} = \bar{u}\gamma^{\mu}\frac{1-\gamma^{5}}{2}d$$

$$J_{W,\text{extended}}^{\mu} = \bar{u} \left[ c_V(q^2) \gamma^{\mu} + c_A(q^2) \gamma^{\mu} \gamma^5 + F_2(q^2) \frac{i \sigma^{\mu\nu} q_{\nu}}{2M} \right] d,$$









# **Predicting the Reactor Neutrino Spectrum**

This was the story for a single beta decay ...

### **Markov Reality:** ~6000 decays contribute

- O would need to know Q-value, relative importance, and all correction factors for each of them
- **O** this information is available only for some decays
- O many isotopes are too short-lived to be studied in the lab
- Method:
  - Use information from nuclear data tables where available ...
  - C ... complemented by a fit to "effective decay branches" (a set of beta decays with parameters fitted in order to match the observed electron spectrum)

Mueller et al. <u>1101.2663</u>, Huber <u>1106.0687</u>









# Verification



Convert to neutrino spectrum using aforementioned method

Compare to MC truth









#### **The Reactor Neutrino Anomaly**

#### Result: predicted flux is $\sim 3.5\%$ ( $\sim 3\sigma$ ) higher than observation









#### The Reactor Neutrino Anomaly

Result: predicted flux is  $\sim 3.5\%$  ( $\sim 3\sigma$ ) higher than observation









