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1.1) Show that only for a free massless fermion the chirality eigenstates
are also helicity eigenstates.

Starting from the Dirac equation:
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1.1) Show that only for a free massless fermion the chirality eigenstates
are also helicity eigenstates.

Now we consider the left chiral state:
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Considering only the top component:
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1.2) Show that the mass matrix M of a Majorana mass must be symmetric
M.=M...
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1.3) Show that if there are N=3+s massive neutrinos, the leptonic mixing
matrix is dimension 3xN and contains 3s+3 physical angles and 2s—1
phases for Dirac neutrinos and 3s+3 for Majorana neutrinos
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In general, a 3 X N matrix can be parametrized as:
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1.3) Show that if there are N=3+s massive neutrinos, the leptonic mixing
matrix is dimension 3xN and contains 3s+3 physical angles and 2s—1

phases for Dirac neutrinos and 3s+3 for Majorana neutrinos

However, we know that ULEPUEEP =15

—
1 0 0 alleid’ll
0O 1 0 = a216i¢21
0 0 1 a3 et
[
2
j=1

aiNe€
agNE
asnNe

1P1N
1PaN

13N

150425

alle_qull

a216_z¢21

ei(¢l.i—¢2j) aljagjei(%j—ff):sj)\

(¢21

aj1€

asN€E

®35)

—i¢31

—i¢3N



1.4) The decay width for f decay N — Pe~ i, after integrating over the
proton momentum is

: ; d3p d3k
dT = G% cos® 6o F(E, ZQMZZW lae @1 = 7)nw
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G, is the Fermi constant, 6 . is Cabbibo’s angle, F(E,Z) a Coulomb factor,
E  is the mass difference between the initial and final nuclei, £ is the
electron energy and o is the neutrino energy. Obtain the electron energy
spectrum dI'/dE and show that the Kurie function
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with O=E, —m , T=E — m , C=G cos’0/=>. Show that the last equality

holds only for O—7>m and Y v =1
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Plot K(7T) as a function of T for tritium (Q = 18.6 KeV) for m; = /3, [U.i[?m? = 0
and for ms = /3, |U.i|?m? = 2.2 eV.
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Considering only the sum over spin:
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Kurie function for Tritium
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1.5) The charged pion decays almost 100% of the time into a muon and a
(muon-type) neutrino. In the reference frame where the parent pion is at
rest, compute the muon energy as a function of the muon-mass (m ), the
charged pion mass (m_), and the neutrino mass (m ). What is the absolute
value of the muon momentum (tri)vector? Numerlcally, what is the relative
change of the muon momentum between m =0 and m =0.1 MeV? It is
remarkable that the muon momentum from pion decay at rest has been
measured at the 3.4x10° level (Phys. Rev. D53, 6065 (1996)). This
provides the most stringent current constraint on the muon-neutrino mass.
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1.5) The charged pion decays almost 100% of the time into a muon and a
(muon-type) neutrino. In the reference frame where the parent pion is at
rest, compute the muon energy as a function of the muon-mass (m ), the
charged pion mass (m_), and the neutrino mass (m ). What is the absolute
value of the muon momentum (tri)vector? Numerlcally, what is the relative
change of the muon momentum between m =0 and m =0.1 MeV? It is
remarkable that the muon momentum from pion decay at rest has been
measured at the 3.4x10° level (Phys. Rev. D53, 6065 (1996)). This
provides the most stringent current constraint on the muon-neutrino mass.

(m2 = (myu 4+ m)?) (m2 = (my, — m,)*)

a2
E, = m, + 42
Jamzmd + (m2 = -+ m)?) (2 = o, = m)?)
Eu = 2m

“lmu=0 - “‘mu=0.1MeV = AEmM = 3.584 x 107



1.6) Derive the characteristic E/L in eV for atmospheric neutrinos, and for
T2K and for Daya Bay.
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1.7) Show that in a disappearance experiment, the survival probability for
neutrinos and antineutrinos is the same.
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An electron neutrino after it
oscillates to a muon neutrino
then oscillates again to a tau neutrino:

I'm the dude
playing the
dude

disguised asy
another dude.,

|dentity theft is not a joke Jim!
1.2 x 10789 neutrinos suffer
every year!




Backup



1.8) a) What is the matter potential for v —v ? (v_is a sterile neutrino.)
Compare with the potential for VoV,

b) In the core of a supernova, the matter density is p~10'* g/cm?. Obtain
the characteristic value for the matter potential for v —v_and v —v_in the
core of the supernova.

c) For what characteristic mass differences (assume £ ~10 MeV) can the
MSW effect occur in such supernova? In which of the two channels does
it occur?



Lepton-Nucleus Cross Section Theory

e Consider the case in which £ = p~ and the elastic scattering happens on a neutron at rest, i.e.
the neutron quadri-momentum is given by (m,,0) and the proton (m, + w,q). Show that the
reconstructed neutrino energy reads
2 2 2

my, —my, —my, +2mpE), (1)

B, =2
Y 2(my, — E, +p,cos,)

where 6,, is the muon angle relative to the neutrino beam.
Solution: Considering the quadri-momentum conservation:

(2)

E,+mn,=E,+ E,

(3)

k, =k, +q

where k,, k, and q are the momentum of neutrino, muon and proton respectively. And E, = m, + w

Considering the invariant mass of proton,

my, = (Bp)* — (0)* (4)

Combining (2), (3) and (4) we can have,
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= mi + m% — 2, b, + 2E,(m, — I, |pu|coseu)
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ms —m
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\ 2(myp — Ep + |pu|cosf)

\




Lepton-Nucleus Cross Section Theory

4 R

Question: Write down the analogous expression for a moving neutron in the initial state, i.e (E,,pn,)-

To derive the neutrino energy expression, define the angle between the neutron and the neutrino beam
momentum as cost,= (k, - pn)/(|kv||Pnl)-

Solution: Similarly that before we will consider the quadri-momentum conservation and the invariant mass

(1)

of proton.
E,+E,=E,+F,

kl/'*'pn:ku_'_q (2)

Where k,, k,,, p, and q are the momentum of neutrino, muon, neutron and proton respectively. Then
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Lepton-Nucleus Cross Section Theory

The most general expression for the hadronic tensor is constructed out of g*” and the independent momentlb
of the initial nucleon p and the momentum transfer ¢, yielding

> (pq” +p"q") (1)

WvH urlguu ”2 p p | Ze,ul/aﬁ H
my 2m N N

where W; are called structure function and my is the nucleon mass.

Question: In the electromagnetic case parity-violating effects are NOT present. The hadronic electromag-
netic current matrix elements are polar-vectors and so the tensor must have specific properties under spatial
inversion. In particular, in this case W3 = 0. The current conservation condition at the hadronic vertex
requires

g W =q W' =0 (2)

As a result of this relation, verify that only two structure function are independent and the hadronic elec-
tromagnetic tensor reads
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= (s )+ (- e ) (- ) >

my

Solution: Considering ¢, W"# = 0 and W3 = 0 in equation (2), we have
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Lepton-Nucleus Cross Section Theory

/ Then we got
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