INSS 2019 Group Work Presentation

Group 10: Sean Gilligan

Katie Mason

Yue Wang

Rafaela Rossi

Ohana Benevides

Section 4: Long Baseline Oscillation Experiments Problem 1

1. Given the following sets of oscillation parameters, what would be the optimal run plan for NOvA to determine specifically the mass hierarchy? Assume $36 \times 10^{20} \ POT$ and monochromatic beam at $E=1.9 \ GeV$.

1.
$$NH$$
, $sin^2(\theta_{23}) = 0.6$, $\delta_{cp} = \frac{3\pi}{2}$

2.
$$NH$$
, $sin^2(\theta_{23}) = 0.4$, $\delta_{cp} = \frac{3\pi}{2}$

3.
$$IH$$
, $sin^2(\theta_{23}) = 0.6$, $\delta_{cp} = \frac{3\pi}{2}$

4.
$$IH$$
, $sin^2(\theta_{23}) = 0.4$, $\delta_{cp} = \frac{\pi}{2}$

- 2. For the case where we do not know those parameters beforehand, what would the run plan be?
- 3. For which case the run plan for question #2 would fail?

Procedure

- Plot the $P(\nu_{\mu} \rightarrow \nu_{e})$ versus $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$
- Identify the points in it that correspond to the question cases
- Include the error bars
- Project those points in each of the axis
- Look for separation of the peaks (is it better in the neutrino mode or on the antineutrino?)

Methodology

We are given: $N_{S \text{ or } B}^{0.5; \nu \text{ or } \bar{\nu}}$, for $6 \times 10^{20} \ POT$

To find the signal count values for $sin^2(\theta_{23}) = 0.4 \ or \ 0.6...$

$$N_S^{0.4} = 6 \times N^{0.5} \times \frac{P(\nu_\mu \to \nu_e)^{0.4}}{P(\nu_\mu \to \nu_e)^{0.5}},$$

for u and $\bar{\nu}$, for $\delta_{cp}=\frac{\pi}{2}$ and $\frac{3\pi}{2}$, for NH and IH

Results - General

Results

Case 1 and 3

Case 1 and 4

Results

Case 2 and 3

Case 2 and 4

Conclusion

	Case 3	Case 4	
Case 1	Mostly at neutrino	Fully at neutrino	
Case 2	Fully at antineutrino	Fully at neutrino	

Case 1-
$$NH$$
, $sin^2\theta_{23} = 0.6$, $\delta_{cp} = 3\pi/2$

Case 2-
$$NH$$
, $sin^2\theta_{23} = 0.4$, $\delta_{cp} = 3\pi/2$

Case 3 -
$$IH$$
, $sin^2\theta_{23} = 0.6$, $\delta_{cp} = 3\pi/2$

Case 4-
$$IH$$
, $sin^2\theta_{23} = 0.4$, $\delta_{cp} = \pi/2$

Thank you

Numerical Methodology

$$N_{S, NH}^{0.4} = \alpha \times N_{S, NH}^{0.4, \nu} + (1 - \alpha) \times N_{S, NH}^{0.4, \bar{\nu}}$$

$$N_{S, IH}^{0.4} = \alpha \times N_{S, IH}^{0.4, \nu} + (1 - \alpha) \times N_{S, IH}^{0.4, \bar{\nu}}$$

$$f(\alpha) = N_{S, NH}^{0.4} - N_{S, IH}^{0.4}$$

Numerical σ calculations

$$\sigma_{\nu \ or \ \bar{\nu}} = \frac{N_S}{N_S + N_B} \sqrt{\frac{1}{N_S} + \frac{1}{N_S + N_B}}$$

	neutrinos (%)	uncertainty (%)	antineutrinos (%)	uncertainty (%)
case 1	7.221	0.699	3.026	0.606
case 2	5.242	0.586	1.76	0.455
case 3	4.858	0.562	4.94	0.94
case 4	1.76	0.309	5.242	0.921

Results 2 - Projections of the general plot

If we compare the hierarchy in the same set of parameters...

