INSS 2019
 Group Work Presentation

Group 10: Sean Gilligan
Katie Mason
Yue Wang
Rafaela Rossi
Ohana Benevides

Section 4: Long Baseline Oscillation Experiments Problem 1

1. Given the following sets of oscillation parameters, what would be the optimal run plan for NOvA to determine specifically the mass hierarchy? Assume $36 \times 10^{20} P O T$ and monochromatic beam at $E=1.9 \mathrm{GeV}$.
2. $N H, \sin ^{2}\left(\theta_{23}\right)=0.6, \delta_{c p}=\frac{3 \pi}{2}$
3. $N H, \sin ^{2}\left(\theta_{23}\right)=0.4, \delta_{c p}=\frac{3 \pi}{2}$
4. $I H, \sin ^{2}\left(\theta_{23}\right)=0.6, \delta_{c p}=\frac{3 \pi}{2}$
5. $I H, \sin ^{2}\left(\theta_{23}\right)=0.4, \delta_{c p}=\frac{\pi}{2}$

6. For the case where we do not know those parameters beforehand, what would the run plan be?
7. For which case the run plan for question \#2 would fail?

Procedure

- Plot the $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$ versus $P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)$
- Identify the points in it that correspond to the question cases
- Include the error bars
- Project those points in each of the axis
- Look for separation of the peaks (is it better in the neutrino mode or on the antineutrino?)

Methodology

We are given: $N_{S \text { or } B}^{0.5 ; ~ \text { or }} \bar{\nu}$, for $6 \times 10^{20} P O T$
To find the signal count values for $\sin ^{2}\left(\theta_{23}\right)=0.4$ or $0.6 \ldots$

$$
N_{S}^{0.4}=6 \times N^{0.5} \times \frac{P\left(\nu_{\mu} \rightarrow \nu_{e}\right)^{0.4}}{P\left(\nu_{\mu} \rightarrow \nu_{e}\right)^{0.5}}
$$

for ν and $\bar{\nu}$, for $\delta_{c p}=\frac{\pi}{2}$ and $\frac{3 \pi}{2}$, for NH and H

Results - General

Electron (Anti) Neutrino Appearance Probability

Results

Case 1 and 3

Case 1 and 4

Neutrino

Antineutrino

Neutrino

Antineutrino

Results

Case 2 and 3

Case 2 and 4

Neutrino

Antineutrino

Neutrino

Antineutrino

Conclusion

Case 3

Case 4

Case 1

Mostly at neutrino
Fully at neutrino

Case 2
Fully at antineutrino
Fully at neutrino

> Case 1- $N H, \sin ^{2} \theta_{23}=0.6, \delta_{c p}=3 \pi / 2$
> Case $3-I H, \sin ^{2} \theta_{23}=0.6, \delta_{c p}=3 \pi / 2$

Case 2- $N H, \sin ^{2} \theta_{23}=0.4, \delta_{c p}=3 \pi / 2$
Case 4- $I H, \sin ^{2} \theta_{23}=0.4, \delta_{c p}=\pi / 2$

Thank you

Numerical Methodology

$$
\begin{aligned}
& N_{\mathrm{S}, N H}^{0.4}=\alpha \times N_{\mathrm{S}, ~ N H}^{0.4, \nu}+(1-\alpha) \times N_{\mathrm{S}, ~ N H}^{0.4, \bar{\nu}} \\
& N_{\mathrm{S}, 1 H}^{0.4}=\alpha \times N_{\mathrm{S}, 1 H}^{0.4, \nu}+(1-\alpha) \times N_{\mathrm{S}, i H}^{0.4, \tilde{\nu}} \\
& f(\alpha)=N_{S, N H}^{0.4}-N_{S, H H}^{0.4}
\end{aligned}
$$

Numerical σ calculations

$$
\sigma_{\nu \text { or } \bar{\nu}}=\frac{N_{S}}{N_{S}+N_{B}} \sqrt{\frac{1}{N_{S}}+\frac{1}{N_{S}+N_{B}}}
$$

	neutrinos (\%)	uncertainty (\%)	antineutrinos (\%)	uncertainty (\%)
case 1	7.221	0.699	3.026	0.606
case 2	5.242	0.586	1.76	0.455
case 3	4.858	0.562	4.94	0.94
case 4	1.76	0.309	5.242	0.921

Results 2 - Projections of the general plot

Neutrino Gaussian Projections

If we compare the hierarchy in the same set of parameters...

