Understanding the Atmospheric Neutrino Data

Group 5:
M. Babicz, D. Doyle, K. Leonard, M.C. Queiroga Bazetto, C. Sweeney

12th International Neutrino Summer School
Fermilab August 5-16, 2019

Super-Kamiokande

Detector Technology:
 Water Cherenkov

Fiducial Volume:

22.5 kT

Under a big mountain:
2,700 m water equivalent

Super-Kamiokande

Task: Data Analysis (Part 1 and 2)

Using data obtained from T. Toshito, hep-ex/0105023

- Plot disappearance probability...
- Weigh the un-oscillated prediction...
- Assess Data/MC agreement...
...for $\theta=\pi / 4$ and $\Delta \mathrm{m}^{2}=2.5 \times 10^{-2}, \times 10^{-3}, \times 10^{-4} \mathrm{eV}^{2}$

Note: Define "Sub-GeV" and "Multi-GeV" as 0.2 GeV and 2 GeV , respectively
\Rightarrow our neutrinos are monochromatic

Plot Disappearance Probability

EZ part:

$$
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)=1-\sin ^{2}(2 \theta) \sin \left(1.27 \frac{\Delta m^{2} L}{E}\right)
$$

Less obvious part:

Integrate probability over $\Delta \cos \theta_{z}$

Predict

Make a prediction:

Oscillation-probability-weighted un-oscillated prediction

Meh... Can we do better?

Big Data/MC discrepancy in the low energy bin

According to Toshito, their "Sub-GeV" energy regime is all $\mathrm{E}_{\mathrm{v}}<1.3 \mathrm{GeV}$, but we assumed monochromatic neutrinos at 0.2 GeV .

Proper treatment:
Expand un-oscillated prediction to 2D with

$$
\Phi\left(\cos \theta_{z^{\prime}} E\right) * \sigma_{v}(E)
$$

normalize to total number of events and weigh by

$$
\left\langle P\left(v_{\mu} \rightarrow v_{\mu^{\prime}} ; \cos \theta_{z^{\prime}} E\right)\right\rangle
$$

What we'll do here:
Perform a fit allowing θ and $\Delta \mathbf{m}^{2}$ float

Part 3: Flux Estimate for $\boldsymbol{V}_{\mathrm{e}}$'s

We want to use the number of observed Sub-GeV e-like events to infer the flux of these types of particles.

Number Observed:

$$
N_{\text {obs }}=\Phi \times P_{\text {int }} \times T \times A
$$

Prob. of a single particle interacting:

$$
P_{i n t}=n L \sigma
$$

Solve for Flux:

$$
\Phi=N_{\text {obs }} /(n \times L \times \sigma \times T \times A)
$$

Part 3: Flux Estimate for v 's

Plugging in Numbers:

- Cross Section:
- $\sigma \sim 5 \mathrm{fb}=5 \times 10^{-39} \mathrm{~cm}^{2}$
- Number Density of nuclei for water:
- $n=\rho N_{A} / A=0.33 \times 10^{23} \mathrm{~cm}^{-3}$
- Time:
- $\mathrm{T}=1289$ days $=1.11 \times 10^{8} \mathrm{~s}$
- Size of Super-Kamiokande:

$$
\begin{aligned}
& \quad A=\pi R^{2}=\pi(40 \mathrm{~m})^{2}=5026 \mathrm{~m}^{2} \\
& \mathrm{~L}=40 \mathrm{~m}
\end{aligned}
$$

- $\mathbf{N}_{\text {obs }} \sim 3000$

$$
\Phi=N_{o b s} /(n \times L \times \sigma \times T \times A)=0.8 / \mathrm{cm}^{2} s
$$

