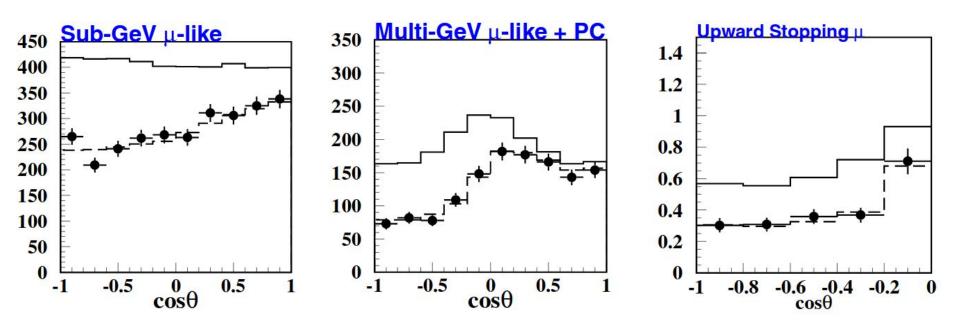
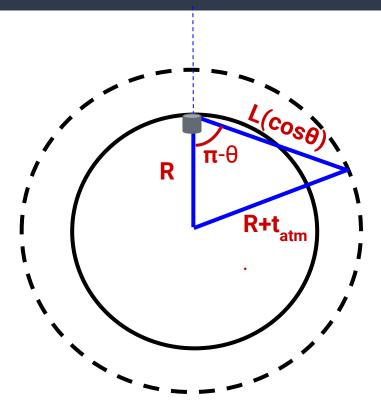
Understanding Atmospheric Neutrino Data


August 15th, 2019

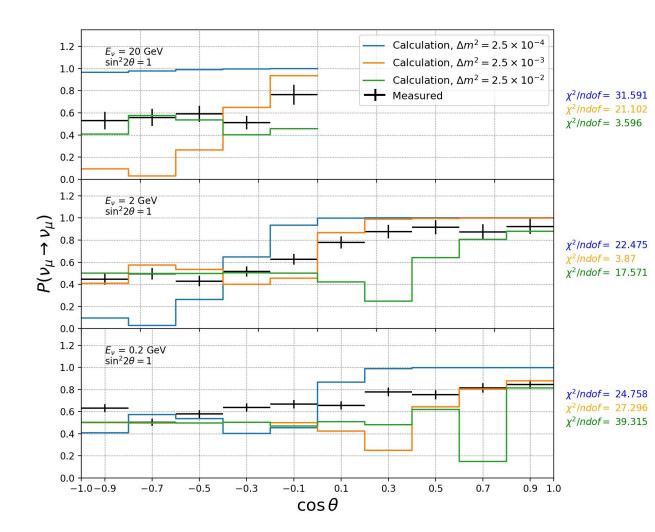
Tom Brooks Micah Groh Justin Mueller Ibrahim Safa Kevin Wood

International Neutrino Summer School 2019

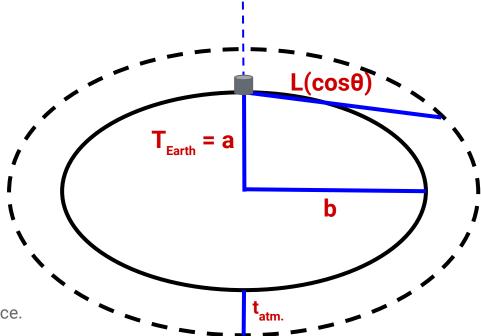
Super Kamiokande Atmospheric Samples (2001)


arXiv:hep-ex/0105023

Baseline Angular Dependence

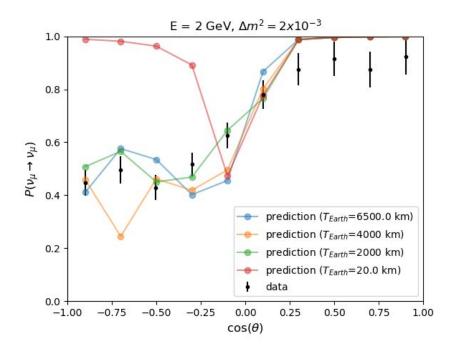

$$\left(R + t_{atm}\right)^2 = L^2 + R^2 + 2LR\cos\theta$$

$$L(\cos\theta) = \sqrt{R^2(\cos^2\theta - 1) + (R + t_{atm})^2 - R\cos\theta}$$

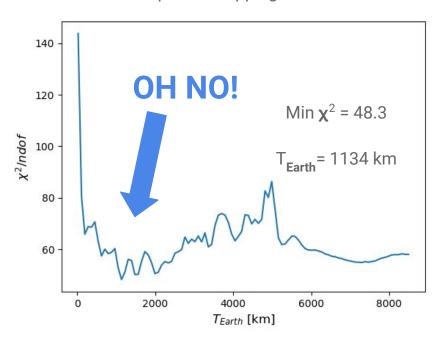


Disappearance Plots

(Assuming 2-flavor transitions)

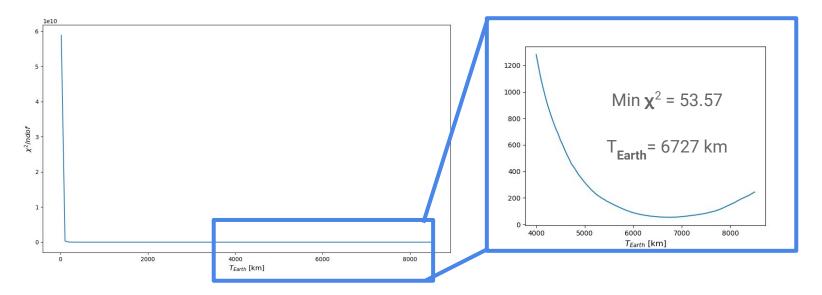


Beyond Standard (BS) Earth Model

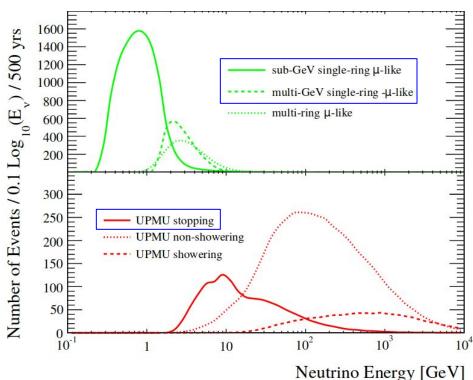


- Assume volume of Earth remains constant.
- Assume Super-K in the middle of flat Earth surface.
- Fix $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$.

Flat Earth Plots

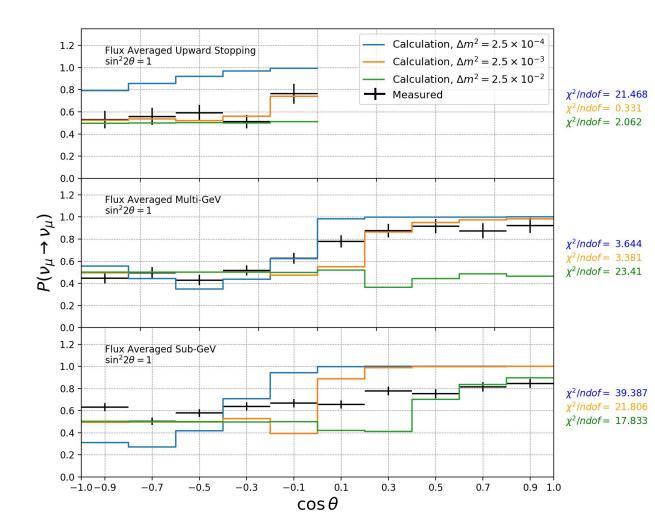


Add χ^2 /ndof for Sub-GeV, Multi-GeV and Upward Stopping data.



Flat Earth Plots (Flux Correction)

- The flux seen as a function of $cos(\theta)$ is not constant as we move from a sphere to an ellipsoid.
- Apply a flux correction proportional to (Area of ellipsoid in $\cos(\theta)$ bin)/(Area of sphere in $\cos(\theta)$ bin).
- This changes the expected unoscillated flux and hence observed oscillation probability.


Neutrino Spectrum

arXiv:1510.08127

Flux-Averaged Disappearance Plots

(Assuming 2-flavor transitions)

• Earth is probably not flat.

$\Delta m^2 \ [\text{eV}^2]$	$\sum_{s} (\chi^2/ndof)_s$	
	Monoenergetic	Flux averaged
2.5×10^{-4}	78.8	64.5
2.5×10^{-3}	52.3	25.5
2.5×10^{-2}	60.5	43.3

Backup: Ellipsoid Distance to Detector

 $\theta < \pi/2$:

$$\gamma = \frac{\sqrt{(a + t_{atm})^2 (b + t_{atm})^2 * (2at_{atm} \tan^2(\theta)) + b^2 + 2bt_{atm} + t_{atm}^2 \tan^2(\theta) + t_{atm}^2 - ab^2 - 2abt_{atm} - at_{atm}^2}{a^2 \tan^2 \theta + 2at_{atm} \tan^2(\theta) + 2bt_{atm} + t_{atm}^2 \tan^2(\theta) + t_{atm}^2}$$

$$L = y\sqrt{1 + \tan^2(\theta)}$$

 $\theta > \pi/2$:

$$y = \frac{\sqrt{(a + t_{atm})^2 (b + t_{atm})^2 * (2at_{atm} \tan^2(\pi - \theta)) + b^2 + 2bt_{atm} + t_{atm}^2 \tan^2(\pi - \theta) + t_{atm}^2 + ab^2 + 2abt_{atm} + at_{atm}^2}{a^2 \tan^2 \pi - \theta + 2at_{atm} \tan^2(\pi - \theta) + 2bt_{atm} + t_{atm}^2 \tan^2(\pi - \theta) + t_{atm}^2}$$

$$L = y\sqrt{1 + \tan^2(\pi - \theta)}$$

Backup: Flux Correction

$$Area_{Sphere}^{[heta_1, heta_2]} = 2\pi (R+t_{atm}) |L_{Sphere}^{ heta_1} \cos(heta_1) - L_{Sphere}^{ heta_2} \cos(heta_2)|$$

$$Area_{Ellipsoid}^{[\theta_1,\theta_2]} = \pi |(L_{Ellipsoid}^{\theta_1})^2 - 2t_{atm}L_{Ellipsoid}^{\theta_1}\cos(\theta_1) - (L_{Ellipsoid}^{\theta_2})^2 + 2t_{atm}L_{Ellipsoid}^{\theta_2}\cos(\theta_2)|$$

$$\Phi_{corrected}^{[\theta_{1},\theta_{2}]}(NoOsc) = \frac{Area_{Ellipsoid}^{[\theta_{1},\theta_{2}]}}{Area_{Sphere}^{[\theta_{1},\theta_{2}]}} \Phi_{Original}^{[\theta_{1},\theta_{2}]}(NoOsc)$$