

Probing Beyond the Standard Model Physics with the Deep Underground Neutrino Experiment

Alexandre Sousa, University of Cincinnati - on behalf of the DUNE Collaboration

DUNE - Deep Underground Neutrino Experiment

1300 km baseline between Fermilab and SURF

New LBNF v beam, 1.2 MW for 120 GeV protons from Fermilab's Main Injector, upgradeable to 2.4 MW (plot shows neutrino-mode flux)

On-axis LArTPC Far Detector with 40 kton fiducial mass, located at SURF, SD, 1.5 km underground

Near Detector at Fermilab, 575 m from target, 60 m depth, 67 ton fid. LArTPC + Multi-Purpose Tracker, off-axis capability (fluxes shown in plot)

Primary Physics goals:

- Study v oscillations, look for leptonic CP violation, determine v mass ordering
- Look for Physics beyond the Standard Model
- Look for nucleon decay
- Study v from Supernova burst

See DUNE TDR Physics volume, chapter 8, for full details on BSM Physics probes with DUNE: https://arxiv.org/abs/2002.03005

DUNE Simulation

Neutrino energy (GeV)

Search for Light Sterile Neutrino Mixing

- DUNE can look for new light v sterile states through:
- CC and NC disappearance between ND and FD ■ Non-standard FD v_e CC appearance
- v_u CC disappearance and v_e CC appearance in the ND
- Deviations from standard behavior in atmospheric v

- For small values of Δm²₄₁, distortions seen at
- For values of $\Delta m_{41}^2 > 1 \text{ eV}^2$, distortions at ND and flat normalization deficit at FD
- Plot above and plots to the the right show DUNE's sensitivities to the sterile mixing angles in a 3+1 model, for oscillations in both detectors using a GLoBES implementation.
- On its own, DUNE can probe the sterile mixing parameter space at the same level or better than present and future experiments

Searches for NSI and Non-Unitarity of Mixing Matrix

Probe non-standard interactions (NSI) between neutrinos and matter by looking for effects on standard oscillation parameter measurements

Middle panel shows comparison of 1D **DUNE** constraints to current constraints

Plot to the right shows constraints with DUNE alone (solid) and with present constraints (dashed)

Search for Neutrino Tridents

- Rare electroweak process resulting in lepton-pair production through
- v interaction in Coulomb field of nucleus
- SM cross section $\mathcal{O}(6-7)$ smaller than for charged-current int. at DUNE v energies ■ Table shows SM signal events per ton of LAr/year (ND LArTPC ~ 67 ton fid. mass)
- for beam data taken in neutrino (top) or antineutrino mode (bottom)

Process	Coherent	Incoherent
$\nu_{\mu} \rightarrow \nu_{\mu} \mu^{+} \mu^{-}$	1.17 ± 0.07	0.49 ± 0.15
$\nu_{\mu} \rightarrow \nu_{\mu} e^+ e^-$	2.84 ± 0.17	0.18 ± 0.06
$\nu_{\mu} \rightarrow \nu_{e} e^{+} \mu^{-}$	9.8 ± 0.6	1.2 ± 0.4
$\nu_{\mu} \rightarrow \nu_{e} \mu^{+} e^{-}$	0	0
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \mu^{+} \mu^{-}$	0.72 ± 0.04	0.32 ± 0.10
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} e^+ e^-$	2.21 ± 0.13	0.13 ± 0.04
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} e^{+} \mu^{-}$	0	0
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \mu^{+} e^{-}$	7.0 ± 0.4	0.9 ± 0.3
th final-state muons and		

- Using topological cuts on trident interactions w background interactions generated with DUNE ND LArTPC sim., select 10.2 signal events and 130 bkg per year (10⁶ bkgd. rejection)
 - Primary bkgd. from v_{μ} CC with single π production

Light Z' boson would enhance signal over SM prediction. Can exclude a large portion of the 2σ allowed region for a Z' explanation of the g-2 anomaly (green)

Searches for Dark Matter

- Sub-GeV (light) dark matter particles could be produced by LBNF in large amounts ■ DM particles are detected through NC interactions in the ND – large backgrounds from standard v interactions
- Plot below shows DUNE reach for the case of elastic scattering between DM and electrons for two different DM parameters, both with ND on-axis and at various off-axis positions

 M_V [GeV]

 M_{χ} [GeV]

- Cold dark matter captured by the Galaxy center or the Sun may lead to production of lighter, boosted dark matter (BDM) via annihilation or decay
- BDM particles can interact with electrons or nucleons in DUNE detectors
- Look for scattered electrons or recoil protons

Sun assuming different boost y factors Sensitivities for galactic BDM detection Atmospheric and neutron bkgds. are included compared to Hyper-K

Other BSM Physics Opportunities with DUNE Near Detector + Far Detector

- Large Extra-Dimensions through distortions of 3-flavor oscillation pattern caused by mixing of neutrinos with Kaluza-Klein modes
- CPT Violation and Lorentz violation through comparison of disappearance measurements during neutrino and antineutrino beam running
- Nonstandard long-baseline v_{τ} appearance, using high-energy beam configuration for enhanced rate of v_{τ} CC interactions
- Atmospheric v signatures of WIMP annihilation in the center of the Sun

- DUNE exclusion limit for large extra-dimensions compared to published MINOS results
- 1σ and 3σ sensitivities to measuring atmospheric osc. parameters with v appearance, compared to v_e appearance and v_u disappearance

Near Detector Only

- Heavy Neutral Leptons (HNLs), such as right-handed partners of active neutrinos, vector, scalar, or axion portals to the Hidden Sector, and light supersymmetric
- particles, by looking for topologies of rare event interactions and decays
- Nonstandard short-baseline v_{τ} appearance, using high-energy beam configuration for enhanced rate of v_{τ} CC interactions.

■ DUNE HNL 90% CL sensitivity regions for dominant mixings |U_{eN}|² (left) and U_{IIN}|² (right) compared to present exclusions and future projects

