Background model of the CUPID-Mo $0 \nu \beta \beta$ experiment

The CUPID-Mo detector

- $20{ }^{100} \mathrm{Mo}$ enriched $\mathrm{Li}_{2}{ }^{100} \mathrm{MoO}_{4}$ crystals, $\sim 200 \mathrm{~g}$ each, operated in the Edelweiss-III set-up at the Laboratoire Souterrain de Modane
- Detection of heat and scintillation light signals allowing alpha discrimination

CUPID-Mo detectors installed in the Edelweiss-III cryostat.

- (Left) Top view of the crystal with NTD Ge sensor glued on the crystal surface
-(Right) Bottom view: Ge-wafer light detector, Ge-LD
- PTFE clamps hold the crystal and the light detectors
- Holders are made of radiopure NOSV copper

Radiopurity of materials

Element	Mass Activity (mBq/kg)			
	(Mass at detect. plate)	${ }^{227 \mathrm{Ra}}$	${ }^{228} \mathrm{Th}$	Others
Ge-LD ${ }^{\text {a }}$	27.4 g	${ }^{238} \mathrm{U}:$ < 0.019	${ }^{323} \mathrm{Th}:<610^{-3}$	
NTD ${ }^{\text {a }}$	2 g	${ }^{238} \mathrm{U}$: <12	${ }^{232} \mathrm{Th}:<4.1$	
PTFE clamps ${ }^{\text {a }}$	216 g	${ }^{238} \mathrm{U}: \leq 0.022$	${ }^{23} \mathrm{Th}:<6.110^{-3}$	
Springs	8.1 g	(11 ± 3)	(21 ± 5)	${ }^{28} \mathrm{Ra} \mathrm{Ra}(26 \pm 9) ;{ }^{40 \mathrm{~V}:(3600 \pm 400)}$
Kapton connect.	33.12	14 ± 7	67 ± 31	
Cu Kapton cables	$510 \mathrm{~g}(106 \mathrm{~g})$	8 ± 6	15 ± 10	
NOMEX cables	4 g	21		
MillMax connect.	0.5 g	102 ± 59	(980 ± 196)	${ }^{238} \mathrm{U}:(12000 \pm 200)$
Brass screws	$2 \mathrm{~kg}(400 \mathrm{~g})$		3.5 ± 0.9	${ }^{210 \mathrm{~Pb}}$:(620 $\left.\pm 254\right){ }^{\text {a }}$ ' ${ }^{37} \mathrm{Cs}:(2.6 \pm 1.5)$
Cu NOSV ${ }^{\text {b }}$	289 kg	<0.040	0.024 ± 0.012	
$\mathrm{CuCUC} 2^{6}$	65 kg	0.025 ± 0.015	0.033 ± 0.016	
PE internal	151 kg (20 kg)	0.65 ± 0.08	0.30 ± 0.07	
Conn. 1 K to 100K	430 g	2600 ± 400	450 ± 44	
${ }^{a}$ CUORE-0, Measurement of the two neutrino double-beta decay half-life of ${ }^{130}$ Te with COURE-0 experiment, Alduino et al, EPJC 77 (2017) 13				
${ }^{6} \mathrm{M}$. Laubensten, private comm.				
Measurements of the detector components. All measurements made by Edelweiss-III and CUPID-Mo collaborations have been made by HPGe γ-spectroscopy. The MillMax connectors have also been measured by ICPMS.				

Data

- Physics data taking started in March 2019
- Total exposure for data release at Neutrino 2020, $0 \nu \beta \beta$ analysis : 2.17 kg y - Exposure in background model: 1.66 kg y

The identified background sources are simulated with a GEANT4 based program, version 10.04.01.

- Radioactive decays are generated with DECAY0 [1] event generator. Each radionuclide in the decay chains of ${ }^{232} \mathrm{Th}$ and ${ }^{238} \mathrm{U}$ is simulated separately.
- Livermore physics list used for physics processes
- Production threshold for secondary γ / β particles down to keV energies

GEANT4 rendering of the CUPID-Mo detectors. Left: 10 mK set-up, Right: a CUPID-Mo individual module

Background model

1. We use the radiopurity measurements, the crystal radiopurity obtained from α region data [2], and distinct gamma lines in the data itself to select the most probable background sources.
2. We use the sum of the energy spectra of γ / β events which triggered only one bolometer (multiplicity 1, M1).
3. The most intense γ lines are produced by the decay of ${ }^{214} \mathrm{~Pb}$ and ${ }^{214} \mathrm{Bi}$ from the ${ }^{238} \mathrm{U}$ chain ${ }^{208} \mathrm{Tl}$ from the ${ }^{232} \mathrm{Th}$ chain, and ${ }^{40} \mathrm{~K}$. Particularly intense γ lines from ${ }^{60} \mathrm{Co}$ are clearly visible, the ${ }^{60} \mathrm{Co}$ contamination being an accidental contamination in the set-up.
4.36 background sources are included in the fit:
\bullet Crystal : $2 \nu \beta \beta \rightarrow{ }^{100} \mathrm{Ru}$ g.s and ${ }^{100} \mathrm{Mo} \rightarrow{ }^{100} \mathrm{Ru} 0_{1}^{+},{ }^{210} \mathrm{~Pb}$ and ${ }^{40} \mathrm{~K}$

- Elements in contact with crystals and copper 10 mK : Copper internal includes holders and supports $\left({ }^{228} \mathrm{Th},{ }^{226} \mathrm{Ra},{ }^{60} \mathrm{Co}\right)$. This contribution is used to represent also all parts facing directly the crystal: light-detectors, PTFE, NTDs, reflectors, bonding wire Other elements: Reflectors ${ }^{210} \mathrm{~Pb},{ }^{60} \mathrm{Co}$ in one light detector
- Nearby: Springs $\left({ }^{(228} \mathrm{Th},{ }^{226} \mathrm{Ra},{ }^{40} \mathrm{~K}\right)$, Kapton cables $\left({ }^{(28} \mathrm{Th},{ }^{226} \mathrm{Ra},{ }^{60} \mathrm{Co}\right)$, connectors $\left({ }^{228} \mathrm{Th}\right.$, $\left.{ }^{226} \mathrm{Ra}\right)$, screws $\left({ }^{228} \mathrm{Th},{ }^{226} \mathrm{Ra},{ }^{228} \mathrm{Ac}\right)$
- Cryostat shields: NOSV copper ($\left.{ }^{228} \mathrm{Th},{ }^{226} \mathrm{Ra}\right), \mathrm{CuC} 2$ copper $\left({ }^{(288} \mathrm{Th},{ }^{226} \mathrm{Ra},{ }^{228} \mathrm{Ac}\right)$
- Shields: Internal PE ($\left.{ }^{228} \mathrm{Th},{ }^{226} \mathrm{Ra},{ }^{228} \mathrm{Ac}\right)$, Internal $\left.\mathrm{Pb}{ }^{(228} \mathrm{Th},{ }^{226} \mathrm{Ra},{ }^{228} \mathrm{Ac}\right)$, Cryostat Outer Shields: Internal PE (${ }^{(288} \mathrm{Th},{ }^{226} \mathrm{Ra},{ }^{228} \mathrm{Ac}$, Inte
Vacuum Chamber ${ }^{\left({ }^{228} \mathrm{Th},{ }^{226} \mathrm{Ra},{ }^{228} \mathrm{Ac},{ }^{60} \mathrm{Co}\right)}$

5. The fit is performed with a Bayesian approach based on Just Another Gibbs Sampler, JAGS [3] and RooFit.

Results

The fit to the CUPID-Mo M1 data is inconsistent with the high state dominance, HSD model of ${ }^{100} \mathrm{Mo} 2 \nu \beta \beta$ decay and clearly favors the single state dominance, SSD mechanism.

- Surface contaminations are not included in this study
\bullet •JAGS fit : Data collected during 1.66 kg y. Fit range: [500-3200] keV . γ / β Multiplicity 1 events.

- The results are consistent with an independent fit based on RooFit using data collected during 0.64 kg y and fit range [1500-3600] keV. γ / β Multiplicity 1 events.

From the background model we can say that:

- Crystal impurities are not contributing to the background in the $0 \nu \beta \beta$ ROI region
- ${ }^{208} \mathrm{Tl}$ decays in near and close elements are responsible for a substantial part of the ob served background in the $0 \nu \beta \beta$ ROI. Let us stress that the components of the EdelweissIII set-up have not been selected to minimize the background in the 3 MeV region.
- Preliminary estimation of CUPID-Mo background rate in [2985-3085] keV: (4 ± 2) 10^{-3} counts/(keV kg y)
\rightarrow Remarkably low considering that the background environment of the cryo stat have not been optimized for $0 \nu \beta \beta$ searches.
- Consistent with an independent estimation based on the fit of M1 γ / β data with exponential+constant (exponential approximates ${ }^{208} \mathrm{Tl}$ tail and $2 \nu \beta \beta$ above 2.7 MeV , constant approximates $2 \nu \beta \beta$ pile-up and muons): $4-5 \times 10^{-3}$ counts/(keV kg y)

References

1. Ponkratenko, V.I. Tretyak, Y. Zdesenko Phys. Atom. Nucl. 63 (2000) 1282.
2. Neutrino 2020 Poster \#404, Denys Poda and E. Armengaud et al, Eur. Phys. J. C 80 (2020) 44.
3. M. Plummer, JAGS version 3.3.0 user manual (2012) and Alduino et al, Eur. Phys. J. C 77 (2017) 13.
