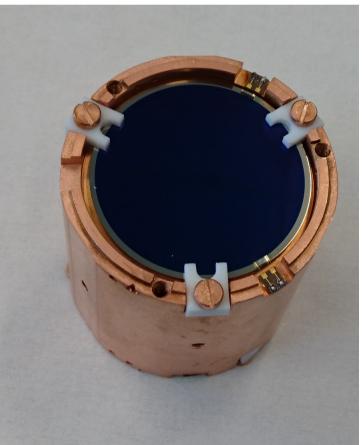

# **Background model of the CUPID-Mo 0** $\nu\beta\beta$ experiment

Pia Loaiza on behalf of the CUPID-Mo collaboration IJCLab, CNRS, Université Paris-Saclay


### **The CUPID-Mo detector**

- 20 <sup>100</sup>Mo enriched Li<sub>2</sub><sup>100</sup>MoO<sub>4</sub> crystals, ~200 g each, operated in the Edelweiss-III set-up at the Laboratoire Souterrain de Modane
- Detection of heat and scintillation light signals allowing alpha discrimination



CUPID-Mo detectors installed in the Edelweiss-III cryostat.





- (Left) Top view of the crystal with NTD Ge sensor glued on the crystal surface
- (Right) Bottom view: Ge-wafer light detector, Ge-LD
- PTFE clamps hold the crystal and the light detectors
- Holders are made of radiopure NOSV copper

### **Radiopurity of materials**

| Element                               | Mass                    |                     |                                    | y (mBq/kg)                |
|---------------------------------------|-------------------------|---------------------|------------------------------------|---------------------------|
|                                       | (Mass at detect. plate) | $^{226}$ Ra         | <sup>228</sup> Th                  | C                         |
| Ge-LD <sup>a</sup>                    | 27.4 g                  | $^{238}$ U: < 0.019 | $^{232}$ Th:<6 10 <sup>-3</sup>    |                           |
| $\mathbf{NTD}^{a}$                    | 2 g                     | $^{238}$ U: $< 12$  | $^{232}$ Th: <4.1                  |                           |
| PTFE clamps <sup><math>a</math></sup> | 216 g                   | $^{238}$ U: <0.022  | $^{232}$ Th: <6.1 10 <sup>-3</sup> |                           |
| Springs                               | 8.1 g                   | $(11 \pm 3)$        | $(21 \pm 5)$                       | $^{228}$ Ra:(26 $\pm$ 9)  |
| Kapton connect.                       | 33.12                   | $14\pm7$            | $67 \pm 31$                        |                           |
| Cu Kapton cables                      | 510 g (106 g)           | $8\pm 6$            | $15\pm10$                          |                           |
| NOMEX cables                          | 4 g                     | 21                  | 19                                 |                           |
| MillMax connect.                      | 0.5 g                   | $102\pm59$          | $(980 \pm 196)$                    | <sup>238</sup> U:(1)      |
| Brass screws                          | 2 kg (400 g)            | -                   | $3.5\pm0.9$                        | $^{210}$ Pb:(620 $\pm$ 25 |
| Cu NOSV <sup>b</sup>                  | 289 kg                  | $<\!0.040$          | $0.024 \pm 0.012$                  |                           |
| Cu CUC2 <sup>b</sup>                  | 65 kg                   | $0.025\pm0.015$     | $0.033\pm0.016$                    |                           |
| PE internal                           | 151 kg (20 kg)          | $0.65\pm0.08$       | $0.30\pm0.07$                      |                           |
| Conn. 1K to 100K                      | 430 g                   | $2600\pm400$        | $450\pm44$                         |                           |
|                                       |                         |                     |                                    |                           |

<sup>a</sup>CUORE-0, Measurement of the two neutrino double-beta decay half-life of <sup>130</sup>Te with COURE-0 experiment, Alduino et al, EPJC 77 (2017) 13

<sup>9</sup> M. Laubensten, private comm.

Measurements of the detector components. All measurements made by Edelweiss-III and CUPID-Mo collaborations have been made by HPGe  $\gamma$ -spectroscopy. The MillMax connectors have also been measured by ICPMS.

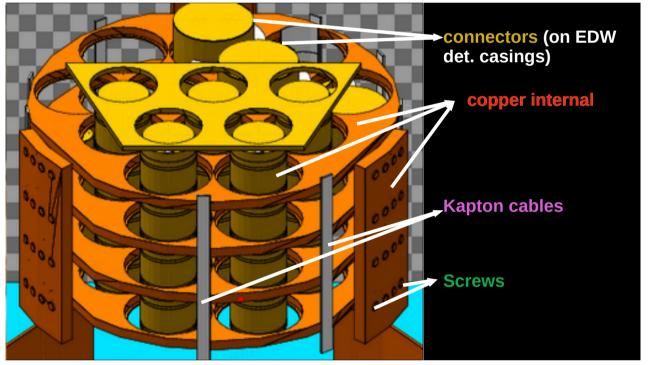
### Data

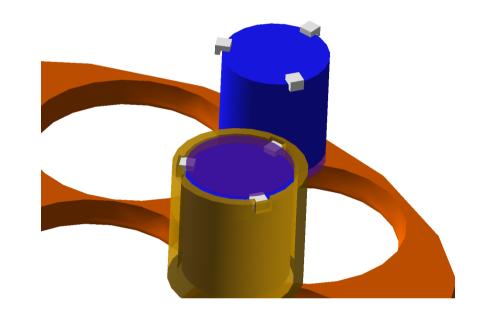
- Physics data taking started in March 2019
- Total exposure for data release at Neutrino 2020,  $0\nu\beta\beta$  analysis : 2.17 kg y
- Exposure in background model: 1.66 kg y

Others


9);  ${}^{40}$ K:(3600 ± 400)

 $(12000 \pm 200)$ 254);  $^{137}$ Cs:(2.6  $\pm$  1.5)

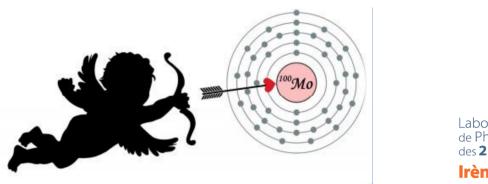

### **Monte Carlo simulations**


The identified background sources are simulated with a GEANT4 based program, version 10.04.01.

- Radioactive decays are generated with DECAY0 [1] event generator. Each radionuclide in the decay chains of <sup>232</sup>Th and <sup>238</sup>U is simulated separately.
- Livermore physics list used for physics processes
- Production threshold for secondary  $\gamma/\beta$  particles down to keV energies



GEANT4 rendering of the CUPID-Mo detectors in the Edelweiss-III set-up

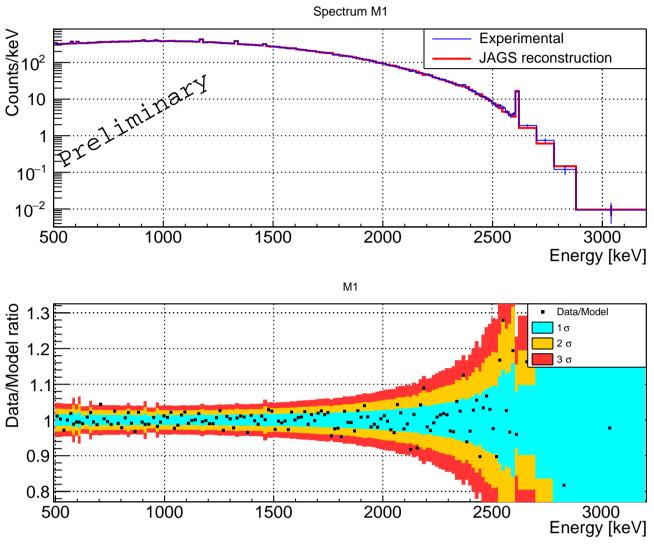


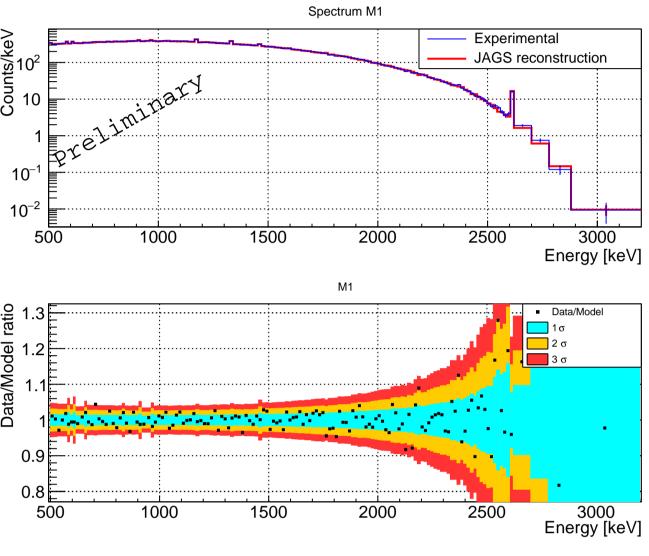


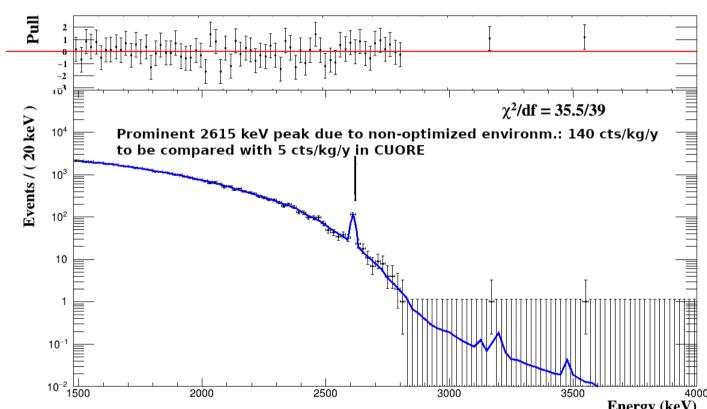

GEANT4 rendering of the CUPID-Mo detectors. Left: 10 mK set-up, Right: a CUPID-Mo individual module

### **Background model**

- We use the radiopurity measurements, the crystal radiopurity obtained from  $\alpha$  region data [2], and distinct gamma lines in the data itself to select the most probable background sources.
- 2. We use the sum of the energy spectra of  $\gamma/\beta$  events which triggered only one bolometer (multiplicity 1, M1).
- 3. The most intense  $\gamma$  lines are produced by the decay of <sup>214</sup>Pb and <sup>214</sup>Bi from the <sup>238</sup>U chain, <sup>208</sup>Tl from the <sup>232</sup>Th chain, and <sup>40</sup>K. Particularly intense  $\gamma$  lines from <sup>60</sup>Co are clearly visible, the <sup>60</sup>Co contamination being an accidental contamination in the set-up.
- 4.36 background sources are included in the fit:
- Crystal :  $2\nu\beta\beta \rightarrow {}^{100}$ Ru g.s and  ${}^{100}$ Mo  $\rightarrow {}^{100}$ Ru  $0^+_1$ ,  ${}^{210}$ Pb and  ${}^{40}$ K
- Elements in contact with crystals and copper 10 mK : Copper internal includes holders and supports (<sup>228</sup>Th, <sup>226</sup>Ra, <sup>60</sup>Co). This contribution is used to represent also all parts facing directly the crystal: light-detectors, PTFE, NTDs, reflectors, bonding wires. Other elements: Reflectors <sup>210</sup>Pb, <sup>60</sup>Co in one light detector
- Nearby: Springs (<sup>228</sup>Th, <sup>226</sup>Ra, <sup>40</sup>K), Kapton cables (<sup>228</sup>Th, <sup>226</sup>Ra, <sup>60</sup>Co), connectors (<sup>228</sup>Th, <sup>226</sup>Ra), screws (<sup>228</sup>Th, <sup>226</sup>Ra, <sup>228</sup>Ac)
- Cryostat shields: NOSV copper (<sup>228</sup>Th, <sup>226</sup>Ra), CuC2 copper (<sup>228</sup>Th, <sup>226</sup>Ra, <sup>228</sup>Ac)
- Shields: Internal PE (<sup>228</sup>Th, <sup>226</sup>Ra, <sup>228</sup>Ac), Internal Pb (<sup>228</sup>Th, <sup>226</sup>Ra, <sup>228</sup>Ac), Cryostat Outer Vacuum Chamber (<sup>228</sup>Th, <sup>226</sup>Ra, <sup>228</sup>Ac, <sup>60</sup>Co)
- 5. The fit is performed with a Bayesian approach based on Just Another Gibbs Sampler, JAGS [3] and RooFit.





### Results

nism.

- Surface contaminations are not included in this study
- 1 events.







From the background model we can say that:

- $(4 \pm 2) \ 10^{-3} \ counts / (keV \ kg \ y)$ stat have not been optimized for  $0\nu\beta\beta$  searches.
- counts/(keV kg y)

### References

- (2020) 44.
- (2017) 13.

## universite

### The fit to the CUPID-Mo M1 data is inconsistent with the high state dominance, HSD, model of <sup>100</sup>Mo $2\nu\beta\beta$ decay and clearly favors the single state dominance, SSD mecha-

• JAGS fit : Data collected during 1.66 kg y. Fit range: [500 - 3200] keV .  $\gamma/\beta$  Multiplicity

• The results are consistent with an independent fit based on RooFit using data collected during 0.64 kg y and fit range [1500 - 3600] keV.  $\gamma/\beta$  Multiplicity 1 events.

• Crystal impurities are not contributing to the background in the  $0\nu\beta\beta$  ROI region

• <sup>208</sup>Tl decays in near and close elements are responsible for a substantial part of the observed background in the  $0\nu\beta\beta$  ROI. Let us stress that the components of the Edelweiss-III set-up have not been selected to minimize the background in the 3 MeV region.

• Preliminary estimation of CUPID-Mo background rate in [2985 - 3085] keV:

 $\rightarrow$  Remarkably low considering that the background environment of the cryo-

• Consistent with an independent estimation based on the fit of M1  $\gamma/\beta$ data with exponential+constant (exponential approximates <sup>208</sup>Tl tail and  $2\nu\beta\beta$ above 2.7 MeV, constant approximates  $2\nu\beta\beta$  pile-up and muons): 4 - 5 x 10<sup>-3</sup>

I. Ponkratenko, V.I. Tretyak, Y. Zdesenko Phys. Atom. Nucl. 63 (2000) 1282. 2. Neutrino 2020 Poster #404, Denys Poda and E. Armengaud et al, Eur. Phys. J. C 80

3. M. Plummer, JAGS version 3.3.0 user manual (2012) and Alduino et al, Eur. Phys. J. C 77