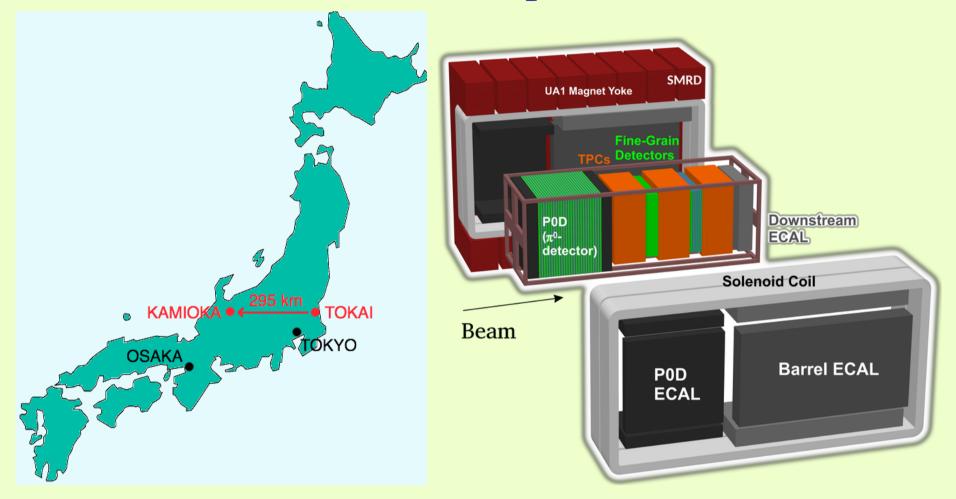
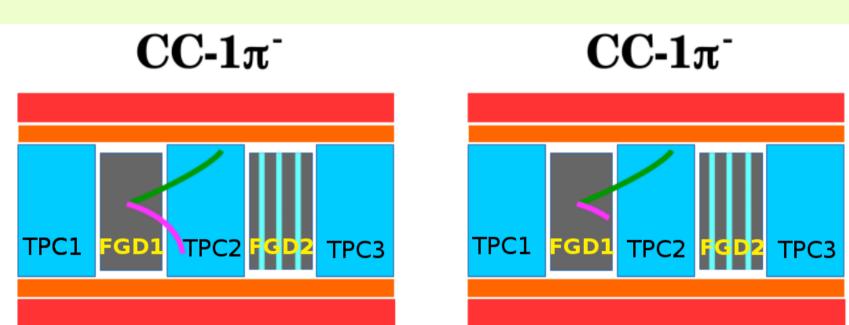
Towards the cross-section measurement of the $\bar{\nu}_{\mu}$ CC single π^- production in the T2K near detector

Introduction

- T2K [1] is a long-baseline neutrino oscillation experiment based in Japan.
- The experimental setup includes intense neutrino beam source and *off-axis* detectors: near detector ND280 and far detector Super-Kamiokande.




Figure 1: Left: Location of T2K experimental sites. Right: Cut-away drawing showing sub-detectors of ND280.

- Goal of the presented analysis is cross section measurement of single π^- production $\bar{\nu}_{\mu}$ $CC1\pi^{-}$, which occurs mostly via interactions with baryon resonance.
- Tracker part of ND280: scintillator detectors (FGD) interleaved with gaseous time projection chambers (TPC).
- Studies obtained using Monte Carlo corresponding to 8.9×10^{21} protons on target (POT) with the NEUT neutrino generator [2]. Data statistics correspond to 6.3×10^{20} POT.

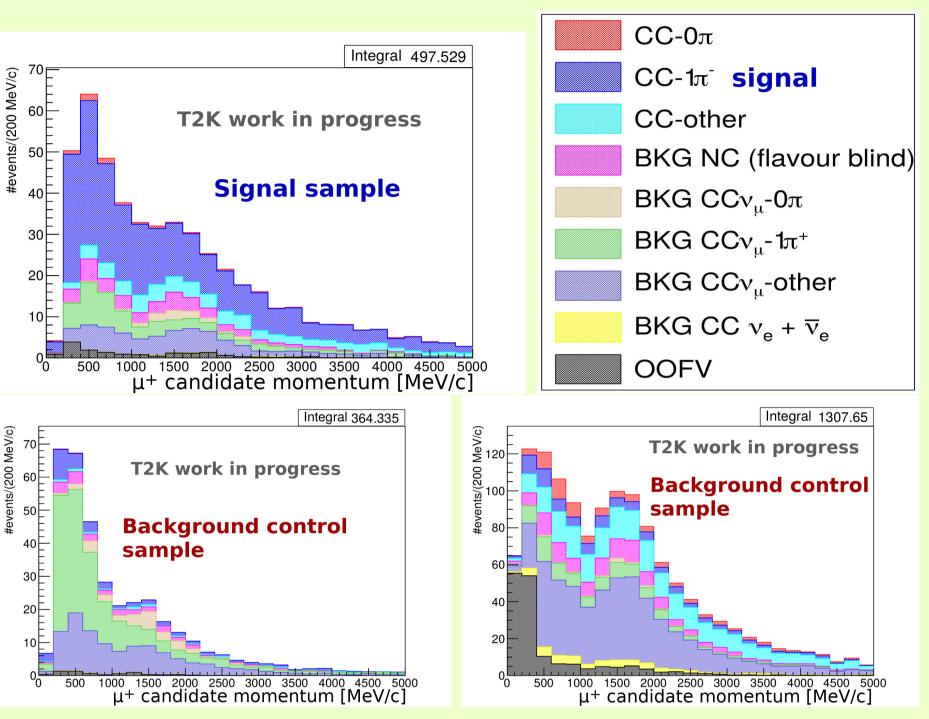
Selection of $\bar{\nu}_{\mu}$ **CC1** π^{-} **topology**

- Defined as a topology with one μ^+ and one $\pi^$ in the final state, with no other types of mesons: $\bar{
 u}_{\mu} + N \rightarrow \mu^{+} + \pi^{-} + X$
- ND280 magnetic field enables charge identification and momentum reconstruction.
- TPC particle identification based on energy loss dE/dx allows for selection of π/μ -like tracks.
- Selection: one track starting in FGD1 fiducial volume (FV) reconstructed as a μ^+ and the

other track starting in FGD1 FV reconstructed as a π^- . Possible signatures of selected events presented in Fig. 2.

Figure 2: CC1 π^- topology event in the ND280 tracker. Green track: μ^+ candidate - always with TPC segment. Purple track: π^- candidate. Left: $\pi^$ candidate containing a segment in TPC. Right: Event with an isolated track in FGD1 interpreted as π^- .

- $\bar{\nu}_{\mu}$ beam contaminated with ν_{μ}
- One of the main background topologies: ν_{μ} $CC1\pi^+$:


$$\nu_{\mu} + \mathbf{N} \rightarrow \mu^{-} + \pi^{+} + \mathbf{X}.$$

- $\mu^+\pi^-$ (signal) and $\mu^-\pi^+$ (background) events are difficult to distinguish due to the same μ/π like energy loss.
- Additional cut based on range of the μ^+ and $\pi^$ candidates: reconstructed μ^+ must reach further downstream parts of the tracker than π^- .
- 49.5% of selected events are true $\bar{\nu}_{\mu}$ CC1 π^{-} signal. The selection efficiency is 20.6%.
- Total detector systematic uncertainty introduces a 4.1% relative error on the number of selected events.

Background control samples

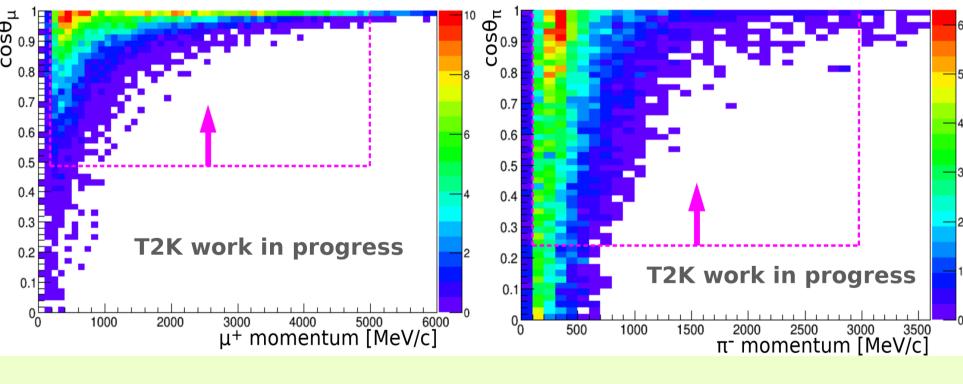

- Background in the signal sample consists mostly of events with multiple pions that were misidentified or not reconstructed or CC ν_{μ} interactions.
- Two background control samples are chosen: $CC1\pi^{-}$ sample with reversed range cut and a sample with π^+ candidate, multiple pion tracks or π^0 signature (CC-other sample).

Figure 3: Distribution of reconstructed momentum of μ^+ candidate in the signal and background control samples. Colors indicate the true final state topology. Top: Signal CC1 π^- sample. Bottom left: CC1 π^- sample with reversed range cut. Bottom right: CC-other sample. Plots normalized to data POT.

Likelihood Fitter

Figure 4: Distribution of signal events in $\cos\theta$ vs *p*. Dashed lines indicate phasespace restrictions. Left: True μ^+ kinematics. Right: True π^- kinematics.

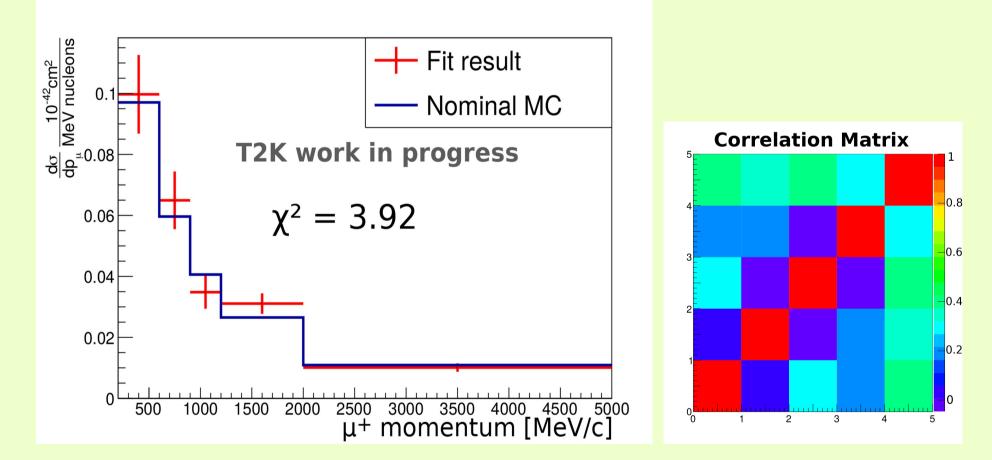
• The cross-section will be reported as doubledifferential in μ^+ momentum and $\cos\theta$.

• **Restricted phase-space** presented in Fig. 4.

• Extraction of the cross-section will be done by template likelihood fit method.

• Fit based on reweighting of MC events in each bin of the true phase-space.

• Unfolding provides mapping between the reconstructed phase-space and the true phase-space.


• Events distribution in the reconstructed phasespace fitted to data by minimazing a dedicated likelihood.

Status

- Data not yet used.

Preliminary fit results

- phase-space.
- sample.

Plans

- MC generators.

References

[1] K. Abe *et al.* [T2K Collaboration], Nucl. Instrum. Meth. A 659 (2011) 106 doi:10.1016/j.nima.2011.06.067 [2] Y. Hayato, Acta Phys. Polon. B 40 (2009) 2477. Used version: NEUT 5.4.0

• Preliminary steps related to cross section measurement are essentialy finalized.

• Template likelihood fit method works properly in preliminary studies.

• Statistical fluctuations are applied to nominal Monte Carlo (MC) in each bin of *reconstructed*

• Nominal MC sample is fitted to fluctuated MC

• Fit result expressed as the cross-section in true μ^+ momentum is presented in the Fig. 5.

Figure 5: Left: Nominal cross-section proportional to distribution of signal events in true μ^+ momentum (dark blue line), fit result (red points). Right: Correlation matrix of reported cross-section in momentum bins.

• Before unblinding data additional MC tests are necessary, including comparison of different

• Binning optimization will also be included.