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• Search for neutrinoless double beta decay in 76Ge at LNGS.
• Use enriched high-purity Ge diodes as both source and detector.
• Energy resolution plays a key role in searching for signals at Qββ .

2. Calibration Spectrum
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Detector GD76C, 2017/08/17

• Use 228Th as the source, deployed by a source insertion system.
• Perform weekly calibrations. See above for an example spectrum.

3. Energy Scale
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Detector GD76C, 2614.511 keV, 2017/08/17
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• Fit gamma lines with models of Gaussian plus backgrounds (left).
• Use linear calibration curve to convert ADC to keV (right).
• Extract FWHM from the width of the Gaussian component.

4. Quadratic Correction
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• 5 detectors have relatively large deviations from linearity. The
residuals (true minus calibrated energy) are shown above (left).
• Apply quadratic corrections to reduce nonlinearity (right).

5. Partitioning of the Data Taking Period
• Majority of the detectors operated stably during data taking.
• An example is shown below. Left: FWHM vs. time at the full

energy peak (FEP). Right: residual vs. time at the single escape
peak (SEP).

 2016
01/01  2016

07/01  2016
12/31  2017

07/02  2017
12/31  2018

07/02  2018
12/31  2019

07/02

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

F
W

H
M

 (
ke

V
)

Upgrade

Detector GD76C, 2614.511 keV
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Detector GD76C, 2103.512 keV

• Some detectors show “jumps” over time due to hardware changes.
Below is an example. They show the same parameters as above,
but for a different detector.
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• Divide full data taking period into partitions for each detector
(represented by different colors in the plots above):
– Compute parameters, such as FWHM, for each partition.
– Construct a lookup table for events in the region of interest.

6. FWHM per Partition
• Aggregate the spectra in a partition, after normalizing them by

exposure and weighting them based on their validity times.

• Fit the FWHMs from different gamma lines with
√
A+BE, ob-

tain the value at Qββ = 2039.1 keV (left below).
• FWHM per partition is 3.1 keV on average (right below).
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 = 2.56 keVββFWHM at Q
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• FWHM uncertainty is 0.14 keV on average, mainly from:
– The stability of the physics data measured by the test pulses

injected into all preamplifiers every 20 s (see below).
– Fluctuations at FEP scaled down to Qββ using

√
E relation.

7. Energy Bias and Uncertainty near Qββ
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• Little energy bias on average, based on residual at SEP (left).
• Energy reconstruction uncertainty is 0.17 keV on average,

determined by the fluctuation of the residual at SEP (right).
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