

Full discrimination of bulk\surface a events achieved Count LMO coated with 0.2 µm of Al exposed to neutron 208 206 → 500 ഗ LD 400 Energy (keV) 4.5

erc

CROSS and CUPID: bolometric experiments with particle identification

¹⁰⁰Mo is the isotope of interest - 3034 keV Q-value, 9.6% isotopic abundance, favorable theoretical predictions for $T_{1/2}$

CUPID (CUORE Upgrade with Particle IDentification) next generation bolometric experiment with double read-out: $Li_2^{100}MoO_4$ crystals+Ge light detectors, aiming to reach sensitivity of $m_{\beta\beta} \sim 12-20$ meV in 10 yr live time.

CROSS (Cryogenic Rare-event Observatory with Surface Sensitivity) aims to use $Li_2^{100}MoO_4$ bolometers with superconducting films to identify and reject near surface events

Background supression is a key point for highly sensitive ton-scale experiment \rightarrow **CROSS** technology can be used in the second phase of CUPID to reach b<10-4cnts/keV/kg/yr

CROSS cryogenic underground facility is validated for operation of scintillating bolometers over longterm runs (>90% duty cycle) and it is now considered as the **CUPID** test facility too Two 45-mm-side cubic Li₂MoO₄ show **excellent** performance, PID by light, hint on high crystal

CROSS: PID with surface sensitive bolometer is achieved using pulse area

CROSS/CUPID joined detector test: 12 enriched crystals + 16 light

with Al films), goal is performance and particle

Full CROSS experiment: about ~80 enriched Li₂¹⁰⁰MoO₄ (+ few ¹³⁰TeO₂) bolometers to prove stability and reproducibility of surface sensitive bolometers for $0v2\beta$ searches

