

Joseph Johnston^{1,a} [jpj13@mit.edu], Anthony Onillon^{2,3} [anthony.onillon@cea.fr], Lorenzo Perisse², and Matthieu Vivier² ⁽³⁾DEN-Service d'études des réacteurs et de mathématiques appliquées (SERMA), CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France

¹Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA; ²IRFU, CEA, Université Paris Saclay, 91191 Gif-sur-Yvette, France;

cea

Most commonly detected through IBD:

...But: - Low cross-section & energy threshold ($E_{Th} = 1.8 \text{ MeV}$)

		CEvNS			5
power reactor	Н	Al_2O_3	Si	Zn	Ge
$\langle \sigma \rangle [10^{-43} \text{cm}^2/\text{fission}], T_{\text{Thr} = 10 \text{ eV}}$	G	~100	~150	~870	~110
$\langle \sigma \rangle [10^{-43} \text{ cm}^2/\text{fission}], T_{\text{Thr} = 100 \text{ eV}}$	~0	~70	~100	~410	~51

Below 1.8 MeV (IBD threshold), \overline{v}_e from:

- Fission

Jeneraly						50
[kg*yrs]	Al ₂ O ₃	Si	Zn	Ge	CaWO ₄	
Best	0.17	0.11	0.04	0.04	0.05	
Med	2.1	1.3	0.31	0.27	1.3	
Worst	230.	190.	190.	270.	5.6e3	

Acknowledgements: This material is based upon research supported by the Chateaubriand Fellowship of the Office for Science & Technology of the Embassy of France in the United States. We also acknowledge the financial support of the Cross-Disciplinary Program on Numerical Simulation of CEA, the French Alternative Energies and Atomic Energy Commission. We wish to thank the Heising-Simons Foundation and the MIT MISTI-France Program for their support of this work.

Sensitivity to **Reactor Spectral Shape**

Measured³ and predicted^{2,4} IBD spectra are not compatible

Shape discrepancy: excess of events around 5 MeV ("bump")

Model as Gaussian function [μ = 5.7 MeV, σ = 0.6 MeV] with

\overline{v}_e spectrum is strongly washed out in recoil energy

- \checkmark Modification to bump extremely spectrum small
- 🖏 Total Rate increases due to $\sigma \sim E^2$ ~ 1% scaling
- ♥ Narrower bump makes detection easier
 - \Box CaWO₄ bump has more structure, but is hard to detect because it is very washed out

Si	Zn	Ge	CaWO ₄
770.	50.	40.	280.

Exposure for **Power Reactor** such that **50%** of experiments reach **5σ** significance

6

\Rightarrow Detection is beyond upcoming experiments

Conclusions

Detection of \overline{v}_{e} with $E_{v} < 1.8$ MeV is possible with upcoming

At low thresholds, Zn/Ge are best due to high σ and more

Precision measurement requires **O[<10 dru]** backgrounds,

Detection of \overline{v}_{e} from ²³⁸U n-capture chain may be possible **Reactor bump detection beyond upcoming experiments**

CEvNS is a powerful complementary tool to measure reactor neutrino fluxes and investigate tensions between IBD data and predictions

[Preliminary Results: Publication in Progress]

Mueller, *et al.*, Phys. Rev. C 83, 054615, (2011), doi: 10.1103/PhysRevC.83.054615

F.P. An, et al. [Daya Bay], Chin. Phys. C 41, no.1, 013002 (2017), doi:10.1088/16741137/41/1/013002