Model-independent way to test the CPT violation using NovA, T2K and INO experiments

1. INTRODUCTION

- Charge-Parity-Time (CPT) symmetry \rightarrow identical oscillation parameters for ν and $\bar{\nu}$
- If different mass and mixing parameters for u and $\bar{\nu}$ \rightarrow possible hint for CPT violation (Model-independent approach)
- Our focus to find sensitivity for $(\Delta m_{32}^2 \Delta \bar{m}_{32}^2$) and $(\sin^2 \theta_{23} - \sin^2 \bar{\theta}_{23})$ using longbaseline and atmospheric neutrino experiments in different possible combinations of octant for neutrinos and anti-neutrinos
- We show the joint sensitivity of the T2K, NOvA and INO experiments to such CPT violating observables

3. OSCILLATION PARAMETERS

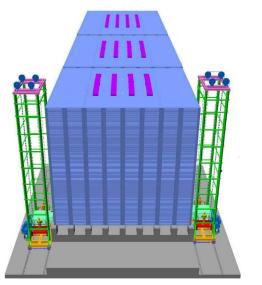
Osc. parameters	True values	Marginalization range			
$\sin^2(2\theta_{12})$	0.86	Fixed			
$\Delta m^2_{21}~({ m eV^2})$	7.6×10^{-5}	Fixed			
$\sin^2(heta_{13})$	0.0234	Fixed			
$\sin^2(heta_{23})$	varied	0.3-0.7			
$ \Delta m^2_{32} $ (eV 2)	varied	$(2.0-3.0) \times 10^{-3}$			
δ_{CP}	0.0	Fixed (INO)			
δ_{CP}	0.0	$[0 - 360^{\circ}]$ (T2K,NOvA)			
Table: Oscillation parameters for both ν and $\overline{\nu}$.					

Possible combinations of octants for ν and $\overline{\nu}$:

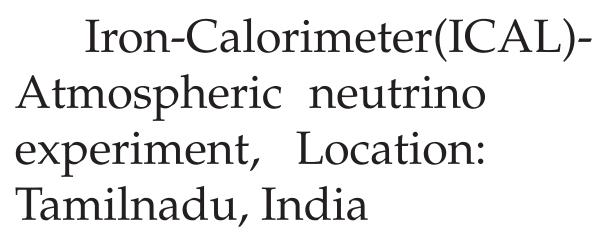
Case 1: ν and $\bar{\nu}$ both in Higher Octant (HO) $[\sin^2 \theta_{23}(\sin^2 \bar{\theta}_{23})]$ in range 0.5-0.7 **Case 2**: ν and $\bar{\nu}$ both in Lower Octant (LO)

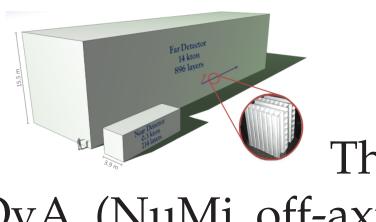
 $[\sin^2 \theta_{23} (\sin^2 \bar{\theta}_{23}) \text{ in range } 0.3-0.5]$ **Case 3**: ν in HO and $\overline{\nu}$ in LO

Case 4: ν in LO and $\overline{\nu}$ in HO

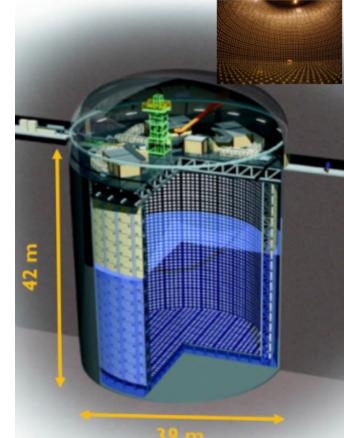

 \rightarrow The experimental sensitivities for all the octants cases have been shown on a single frame with allowed regions at 1σ , 2σ and 3σ Confidence Level (CL) under Normal-Hierarchy assumption.

REFERENCES

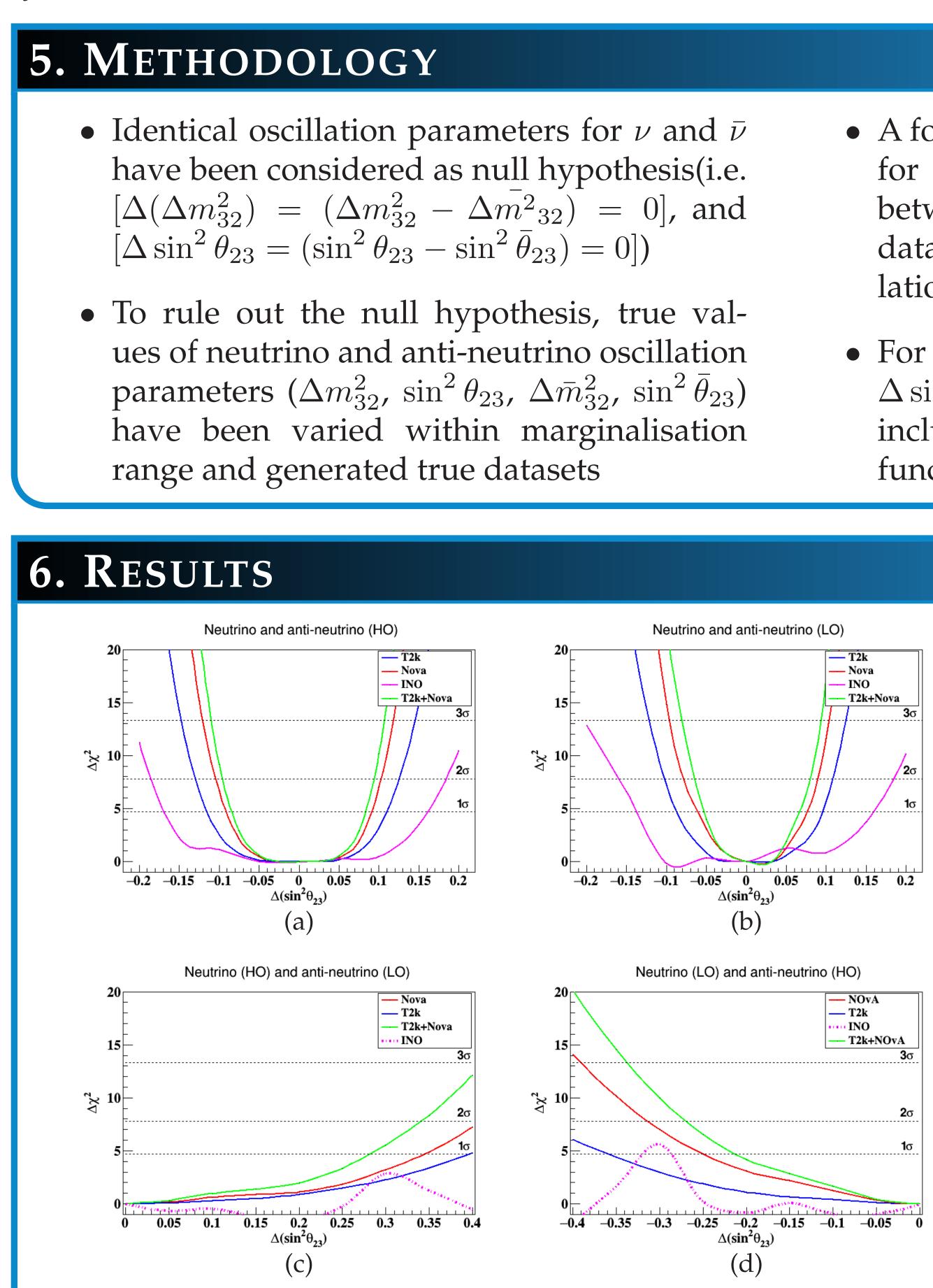

[1] Phys.Rev.D 101 (2020) 5, 5. DOI: 10.1103/Phys-RevD.101.055017 [2] P. Huber et al., Comput. Phys. Commun. 167, 195 (2005)


Daljeet Kaur, University of Delhi, India

2. EXPERIMENTS



baseline neutrino ex-Location: periment, Ash River, Minnesota



NOvA (NuMi off-axis ν_e appearance), long-

to Kamioka), long baseline, Location: Tokai, Japan

Features	INO	
Source	Atmospheric neutrino	
Runtime	10 years for ν_{μ} and $\bar{\nu}_{\mu}$	
Detector	50kton Iron Calorimeter	
Charge-id eff.	$\sim 99\%$ for μ^- and μ^+	
Direction eff.	1 degree (few GeV muons)	
Features	NOvA	
Baseline	810 km	
Run time	3 year ν and 3 year $\bar{\nu}$	
Detector	14 kton	
Signal eff.	26%(ν_e), 41% ($\bar{\nu_e}$), 100% (ν_μ , $\bar{\nu_\mu}$ CC)	
Background eff	as in Ref. [1]	
Features	T2K	
Baseline	295 km	
Run time	5 year ν and 5 year $\bar{\nu}$	
Detector	22.5 kton	
Signal eff.	87% ($\nu_e, \bar{\nu_e}$), 100% ($\nu_\mu, \bar{\nu}_\mu$ CC)	

 \rightarrow Systematics used in analysis as given in Ref [1]

as in Ref. [1]

 \rightarrow GLoBES [2] simulation toolkit for longbaseline experiments and a c++ based based code for atmospheric ν experiment.

7. CONCLUSIONS

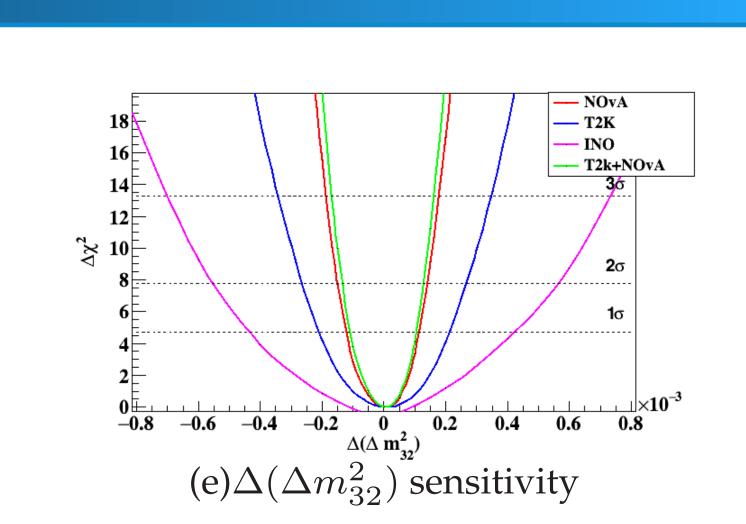
Background eff.

• With the proposed fiducial volume and run time, the NOvA detector found the best among all the considered experiments for constraining $\Delta(\Delta m_{32}^2)$ and $\Delta \sin^2 \theta_{23}$

Joint sensitivity of NOvA, T2K, INO for $\Delta \sin^2 \theta_{23}$ when (a) ν and $\bar{\nu}$ in HO, (b) ν and $\bar{\nu}$ in LO, (c) ν in HO and $\bar{\nu}$ in LO and (d) when ν in LO and $\bar{\nu}$ in HO and (e) for $\Delta(\Delta m_{32}^2) eV^2$ which is almost same for all octants

- Measurement of $\Delta \sin^2 \theta_{23}$ is largely affected by the existence of ν and $\bar{\nu}$ in particular octant
- All considered experiments are least sensitive for different octant combinations for neutrinos and anti-neutrinos

• NOvA+T2k joint results enhances the sensitivities for $\Delta \sin^2 \theta_{23}$ if the ν and $\bar{\nu}$ are in different octants. The present CPT bounds at 1σ confidence interval are shown in Table(f)


PUBLICATION

This work has been published in: Phys.Rev.D 101 (2020) 5, 5. DOI: 10.1103/Phys-**RevD.101.055017**

• A four dimensional grid search is performed for the predicted dataset. χ^2 is calculated between the true datasets and predicted datasets for each set of true values of oscillation parameters

• For each set of difference $\Delta(\Delta m_{32}^2)$ or $\Delta \sin^2 \theta_{23}$, we calculate $\Delta \chi^2 = \chi^2 - \chi^2_{min}$ including marginalisation and plot it as the functions of desired set of differences

$ \Delta(\Delta m_{32}^2) \times 10^{-3} eV^2$						
Osc.parameter	NOvA	T2K	INO	T2K+NOvA		
$ \Delta(\Delta m_{32}^2) $	0.10	0.22	0.40	0.10		
$ \Delta \sin^2 \theta_{23} $						
Octant Case 1	0.1	0.13	0.16	0.07		
Octant Case 2	0.08	0.12	0.17	0.09		
Octant Case 3	0.34	0.4	$< 1\sigma$	0.28		
Octant Case 4	0.24	0.36	$<\!\!1\sigma$	0.21		
f) 1σ sensitivity						

• For similar octant combinations (either LO or HO) for both ν and $\bar{\nu}$, Precise determination of $\Delta \sin^2 \theta_{23}$ for all the experiments

• Each experiment is able to measure $\Delta(\Delta m_{32}^2)$ quite significantly irrespective of different octant combinations

THANK YOU!!