Aim of singular values approach to mixing matrices

- Investigation of the region of physically admissible mixing matrices.
- Deeper understanding of the neutrino mixing phenomenon.
- Study of scenarios with different number of additional neutrinos.
- Establishing new restrictions on light-heavy neutrino mixings.

Neutrino masses and mixing

$$\mathcal{L} = -\bar{\nu}_L M \nu_R + H.c. \rightarrow M = U^{\dagger} m V \rightarrow \nu_{\alpha L}^{(f)} = (U^{\dagger})^{\dagger}$$

(A) Deviation from unitarity in the neutrino sector [3]

= ((1	$-\alpha$	U	=	Τυ	
		a				

Entry	(I): $m > EW$	(II): $oldsymbol{\Delta}m^2\gtrsim 100~{ m eV^2}$	(III): $\Delta m^2 \sim 0$.
$T_{11} = 1 - \alpha_{11}$	$0.99870 \div 1$	$0.976 \div 1$	0.990÷
$T_{22} = 1 - \alpha_{22}$	$0.99978 \div 1$	$0.978 \div 1$	0.986÷
$T_{33} = 1 - \alpha_{33}$	$0.99720 \div 1$	$0.900 \div 1$	0.900÷
$\mathcal{T}_{21} = \alpha_{21} $	$0.0 \div 0.0068$	$0.0 \div 0.025$	$0.0 \div 0.0$
$T_{31} = \alpha_{31} $	$0.0 \div 0.00270$	$0.0 \div 0.069$	$0, 0 \div 0.0$
$T_{32} = \alpha_{32} $	$0.0 \div 0.00120$	$0.0 \div 0.012$	$0.0 \div 0.0$

(B) Knowledge from matrix analysis [4]

1) Matrix Norm

A matrix norm is a function $\|\cdot\|$ from the set of all complex matrices into \mathbb{R} that satisfies the following properties

> $||A|| \geq 0$ and $||A|| = 0 \Leftrightarrow A = 0$, $\|\alpha A\| = |\alpha| \|A\|,$ $||A + B|| \le ||A|| + ||B||,$ $||AB|| \leq ||A|| ||B||.$

2) Weyl's Inequalities

Let A and B be $n \times n$ Hermitian matrices. Then

 $\lambda_j(A+B) \leq \lambda_i(A) + \lambda_{j-i+1}(B)$ for $i \leq j$, $\lambda_i(A+B) \geq \lambda_i(A) + \lambda_{i-i+n}(B)$ for $i \geq j$.

3) Singular values

Singular values σ_i of a given matrix A are positive square roots of the eigenvalues λ_i of the matrix AA^{\dagger}

 $\sigma_i(A) = \sqrt{\lambda_i(AA^{\dagger})}.$

4) Contractions

 $\|A\| \leq 1$

Operator norm (spectral norm)

 U_{PMNS} -

 $||A|| := \sup_{\|x\|=1} ||Ax|| = \sigma_{\max}(A)$

5) Unitary dilation

$$\xrightarrow{\text{ilation}} \begin{pmatrix} U_{\text{PMNS}} & U_{lh} \\ U_{hl} & U_{hh} \end{pmatrix} \equiv U \to UU^{\dagger} =$$

Singular values as neutrino mixing quantifiers

Wojciech Flieger

Institute of Physics, University of Silesia

$$\begin{pmatrix} \mathbf{0} \ s_{13}e^{-i\delta} \\ \mathbf{1} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{c}_{13} \end{pmatrix} \begin{pmatrix} \mathbf{c}_{12} \ s_{12} \ \mathbf{0} \\ -s_{12} \ \mathbf{c}_{12} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \end{pmatrix}$$

$$m^2_{32} = (2.453 \pm 0.034) \times 10^{-3} \ [{
m eV}^2]$$

$$lpha_1,...,lpha_m\geq oldsymbol{0},\sum_{i=1}^m lpha_i=oldsymbol{1},$$
mental values}

$$\|V_{osc}\| > 1$$
 U_{EXP}

Unphysical region

$$egin{aligned} &\sigma_2 = 1.0, \sigma_3 < 1.0 \}, \ &\sigma_2 < 1.0, \sigma_3 < 1.0 \}, \ &\sigma_2 < 1.0, \sigma_3 < 1.0 \}, \ &\sigma_2 = 1, \sigma_3 = 1 \}. \end{aligned}$$

(E) Estimation of the light-heavy U_{lh} mixing [6]

$$\begin{split} \Omega_1 : 3+1 \text{ scenario: } \mathbf{\Sigma} &= \{ \sigma_1 = \mathbf{1.0}, \sigma_2 = \mathbf{1.0}, \sigma_3 < \mathbf{1.0} \} \\ & \begin{pmatrix} W_1 & \mathbf{0} \\ \mathbf{0} & W_2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{c} & -s \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{s} & \mathbf{c} \end{pmatrix} \begin{pmatrix} Q_1^{\dagger} & \mathbf{0} \\ \mathbf{0} & Q_2^{\dagger} \end{pmatrix} . \end{split}$$

We are interested in the estimation of the light-heavy mixing sector which is given by
$$U_{lh} = W_1 S_{12} Q_2^{\dagger}, \end{split}$$

o:
$$\boldsymbol{\Sigma} = \{ \sigma_1 = \mathbf{1.0}, \sigma_2 = \mathbf{1.0}, \sigma_3 < \mathbf{1.0} \}$$

 $\begin{pmatrix} W_1 & 0 \\ 0 & W_2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & \mathbf{0} & c & -s \\ \hline \mathbf{0} & \mathbf{0} & s & c \end{pmatrix} \begin{pmatrix} Q_1^{\dagger} & 0 \\ 0 & Q_2^{\dagger} \end{pmatrix} .$
the estimation of the light-heavy mixing sector which is given by
 $U_{lh} = W_1 S_{12} Q_2^{\dagger},$

where $W_1 \in \mathbb{C}^{3 \times 3}$ is unitary, $S_{12} = (0, 0, -s)^T$ and $Q_2 = e^{i\theta}, \theta \in (0, 2\pi]$. Taking into account exact values of the W_1 we can estimate the light-heavy mixing by the analytical formula

$$|U_{i4}| = |w_{i3}| \cdot |\sqrt{1 - \sigma_3^2}|, \quad i = e, \mu, \tau.$$

(I) $m > EW$:	
$ U_{e4} \leq 0.021,$	
$ U_{e4} \leq 0.055$ [7],	
(II): $\Delta m^2 \gtrsim 100 \ { m eV}^2$	2
$ U_{e4} \leq 0.082,$	
(III) $\Delta m^2 \sim 0.1 - 1$	
$ U_{e4} \leq 0.130,$	
$ U_{e4} \leq 0.167$ [8],	

References [1] C. Patrignani et al. (Particle Data Group). Chin. Phys. C, 40, 100001 (2016) (http://www-pdg.lbl.gov/2016/tables/rpp2016-sum-leptons.pdf) [2] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ_{23} , δ_{CP} , and the mass ordering, JHEP 01 (2019) 106 [3] M. Blennow, P. Coloma, E. Fernandez-Martinez, J. Hernandez-Garcia, J. Lopez-Pavon, Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions, JHEP 04 (2017) 153. [4] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University Press, 1990. [5] K. Bielas, W. Flieger, J. Gluza, M. Gluza, Neutrino mixing, interval matrices and singular values, Phys. Rev. D 98 (2018) 053001. [6] W. Flieger, J. Gluza, K. Porwit, New limits on neutrino non-unitary mixings based on prescribed singular values, JHEP 03 (2020) 169. [7] F. del Aguila, J. de Blas, M. Perez-Victoria, Effects of new leptons in Electroweak Precision Data, Phys. Rev. D78 (2008) 013010. [8] S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations, JHEP 06 (2017) 135. [9] M. Dentler, A. Hernandez-Cabezudo, J. Kopp, P. A. N. Machado, M. Maltoni, I. Martinez-Soler, T. Schwetz, Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos, JHEP 08 (2018) 010. Acknowledgments: Work is supported by the Polish National Science Centre (NCN) under the Grant Agreement No. 2017/25/B/ST2/01987

UNIWERSYTET ŚLĄSKI W KATOWICACH

Estimation of the light-heavy mixing via CS decomposition

 $|U_{\mu 4}| \leq 0.021,$ $|U_{ au 4}| \leq 0.075.$ $|U_{\mu4}| \leq 0.057$ [7], $|U_{\tau4}| \leq 0.079$ [7]. $|U_{\mu 4}| \leq 0.099,$ $|U_{\tau 4}| \leq 0.44.$ eV^2 : $|U_{\mu4}| \leq 0.167, \qquad |U_{\tau4}| \leq 0.436.$ $|U_{\mu4}| \leq 0.148$ [8], $|U_{\tau4}| \leq 0.361$ [9].