Aim of singular values approach to mixing matrices

- Investigation of the region of physically admissible mixing matrices. - Deeper understanding of the neutrino mixing phenomenon. - Study of scenarios with different number of additional neutrinos. - Establishing new restrictions on light-heavy neutrino mixings.

Neutrino masses and mixing
$\mathcal{L}=-\bar{\nu}_{L} M \nu_{R}+H . c . \rightarrow M=U^{\dagger} m V \rightarrow \nu_{\alpha L}^{(f)}=\left(U_{\mathrm{PMNS}}\right)_{\alpha i} \nu_{i L}^{(m)}$

Current status of masses and mixings [1,2]

$$
U_{\text {PMINS }}=\left(\begin{array}{ccc}
\mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & c_{23} & s_{23} \\
\mathbf{0} & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & \mathbf{0} & s_{13} e^{-i \delta} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} \\
-s_{13} e^{i \delta} & \mathbf{0} & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
\mathbf{0} & \mathbf{0} & 1
\end{array}\right)
$$

$\theta_{12} \in\left[31.61^{\circ}, 36.27^{\circ}\right], \quad \theta_{23} \in\left[41.1^{\circ}, 51.3^{\circ}\right]$,
$\theta_{13} \in\left[8.22^{\circ}, 8.98^{\circ}\right], \quad \delta \in\left[144^{\circ}, 357^{\circ}\right]$,
$\Delta \mathrm{m}_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5}\left[\mathrm{eV}^{2}\right], \quad \Delta \mathrm{m}_{32}^{2}=(2.453 \pm 0.034) \times 10^{-3}\left[\mathrm{eV}^{2}\right]$

(E) Estimation of the light-heavy $U_{l h}$ mixing [6]

$\Omega_{1}: 3+1$ scenario: $\Sigma=\left\{\sigma_{1}=1.0, \sigma_{2}=1.0, \sigma_{3}<1.0\right\}$

$$
\left(\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & c & -s \\
0 & 0 & s & c
\end{array}\right)\left(\begin{array}{cc}
Q_{1}^{\dagger} & 0 \\
0 & Q_{2}^{\dagger}
\end{array}\right) .
$$

We are interested in the estimation of the light-heavy mixing sector which is given by

$$
U_{l h}=W_{1} S_{12} Q_{2}^{\dagger}
$$

where $W_{1} \in \mathbb{C}^{3 \times 3}$ is unitary, $S_{12}=(0,0,-s)^{T}$ and $Q_{2}=e^{i \theta}, \theta \in(0,2 \pi]$. Taking into account exact values of the W_{1} we can estimate the light-heavy mixing by the analytical formula

$$
\left|U_{i 4}\right|=\left|w_{i 3}\right| \cdot\left|\sqrt{1-\sigma_{3}^{2}}\right|, \quad i=e, \mu, \tau
$$

Estimation of the light-heavy mixing via CS decomposition
It is divided into four disjoint subsets:
$\Omega_{1}: 3+1$ scenario: $\Sigma=\left\{\sigma_{1}=1.0, \sigma_{2}=1.0, \sigma_{3}<1.0\right\}$,
$\Omega_{2}: 3+2$ scenario: $\boldsymbol{\Sigma}=\left\{\sigma_{1}=1.0, \sigma_{2}<1.0, \sigma_{3}<1.0\right\}$,
$\Omega_{3}: 3+3$ scenario: $\Sigma=\left\{\sigma_{1}<1.0, \sigma_{2}<1.0, \sigma_{3}<1.0\right\}$,
$\Omega_{4}:$ PMNS scenario: $\Sigma=\left\{\sigma_{1}=1, \sigma_{2}=1, \sigma_{3}=1\right\}$.

(D) Numerical studies with singular values [6]

- Analysis of the amount of the space for additional neutrinos based on deviations of singular values from unity.
Results: e.g. $\Delta m^{2} \sim 0.1-1 \mathrm{eV}^{2} \rightarrow \sigma_{3}=0.889$
A study of possible distinction between three scenarios with different number of additional neutrinos on the level of experimental data using singular values and corresponding division of the neutrino mixing space Ω. Results:
$\triangleright 3+2$ and $3+3$ scenarios cannot be distinguished.
$\triangleright 3+1$ scenario differs.
- (I) $m>$ EW :
$\left|U_{e 4}\right| \leq 0.021, \quad\left|U_{\mu 4}\right| \leq 0.021, \quad\left|U_{\tau 4}\right| \leq 0.075$. $\left|U_{e 4}\right| \leq 0.055[7], \quad\left|U_{\mu 4}\right| \leq 0.057$ [7], $\quad\left|U_{\tau 4}\right| \leq 0.079$ [7].
- (II): $\Delta m^{2} \gtrsim 100 \mathrm{eV}^{2}$:

$$
\left|U_{e 4}\right| \leq 0.082, \quad\left|U_{\mu 4}\right| \leq 0.099, \quad\left|U_{\tau 4}\right| \leq 0.44
$$

- (III) $\Delta m^{2} \sim 0.1-1 \mathrm{eV}^{2}$:
$\left|U_{e 4}\right| \leq 0.130, \quad\left|U_{\mu 4}\right| \leq 0.167, \quad\left|U_{\tau 4}\right| \leq 0.436$.
$\left|U_{e 4}\right| \leq 0.167[8], \quad\left|U_{\mu 4}\right| \leq 0.148[8], \quad\left|U_{\tau 4}\right| \leq 0.361$ [9].

