3+1 Oscillation Model

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \qquad \text{Jacob Larkin}$$

$$P_{\alpha \to \beta} = \begin{vmatrix} \delta_{\alpha\beta} - \sin^2 2\theta_{\alpha\beta} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right) \end{vmatrix}$$

$$\sin^2 2\theta_{\mu e} = 4 |U_{\mu 4}|^2 |U_{e4}|^2$$

$$\sin^2 2\theta_{\mu \mu} = 4 |U_{\mu 4}|^2 \left(1 - |U_{\mu 4}|^2\right)$$

CAFAna

- Developed originally for NOvA, and used in DUNE LBL analysis
- Analysis and fitting framework facilitates exploration of sensitivity and impact of systematics
- Using binned Poisson distributed data (M = expected, D = observed, $P(\theta)$ = penalty term):

$$\chi^{2} = 2 \sum_{i}^{N_{bins}} \left[M_{i}(\theta) - D_{i} + D_{i} \log\left(\frac{D_{i}}{M_{i}(\theta)}\right) \right] + P(\theta)$$

- Red: 68% error band from CAFAna systematic parameterization
- Green: 68% error band from 1000 generated universes
- CAFAna covers variations in the universes well
- Preliminary estimate of flux and interaction systematics included
- Detector effects not yet included

Sensitivity to eV scale sterile neutrino oscillations at SBN n (Brookhaven National Lab & Stony Brook University) for the SBN collaboration

Muon Neutrino Disappearance

• Oscillated spectra (blue triangles) show disappearance signal when compared to unoscillated spectra (solid line) • Bottom plots show oscillated over unoscillated ratio in each bin, also showing disappearance near the peak of the MicroBooNE and Icarus spectra

Electron Neutrino Appearance

 Oscillated spectra (black line) show appearance signal when compared to background • Bottom plots show oscillated over unoscillated ratio in each bin, also showing appearance near the peak of the MicroBooNE and Icarus spectra

Sensitivities

- systematic uncertainty
- not included here).

• Multi-detector experiment reduces impact of

• The oscillation sensitivities shown here, employ the same systematic error assignments used in the SBN proposal [arXiv:1503.01520] with known caveats. Work is currently in progress to improve the SBN oscillation sensitivity calculations by a) migrating to a better-motivated interaction model and modern uncertainty assignments from GENIE 3, b)incorporating a first evaluation of uncertainties in the detector response, and c)evaluating model dependencies and biases in the extrapolation from SBND to ICARUS (a-c

• 3 detector sensitivity (black) covers the entire 99% allowed region from LSND (green) [arXiv:1803.10661v1]

Stony Brook