Core-collapse supernova neutrino detection in KM3NeT A. Coleiro¹, M. Colomer^{1,2†}, D. Dornic³, V. Kulikovskiy⁴, M. Lincetto^{3†} on behalf of the KM3NeT Collaboration. ¹APC, Univ. Paris Diderot (Paris); ²IFIC, CSIC-UV (Valencia); ³Aix Marseille Univ, CNRS/IN2P3, CPPM; ⁴INFN - Sez. di Genova; [†]speakers, mcolomer@apc.in2p3.fr, lincetto@cppm.in2p3.fr

Core-collapse supernovae

Explosive phenomena that can occur at the end of the life of massive stars. The explosion mechanism is not fully understood, but neutrinos play a fundamental role in it.

99% of gravitational energy released through neutrinos when photons cannot escape the star!

First and only observation as of today: 24 neutrinos detected from SN1987A, future events will bring thousands.

KM3NeT detector

KM3NeT ORCA and ARCA [1] neutrino detectors are 3D arrays of digital optical modules (DOMs), 6210 in total.

A DOM features **31 PMTs in a** spherical glass sphere, with on-board front-end electronics.

18 DOMs are vertically connected to form a **detection unit** (DU).

Optical backgrounds in seawater: radioactive decays, bioluminescence and atmospheric muons.

Simulation of CCSN neutrinos

State-of-the-art 3D simulations of four CCSN progenitors of 40 M $_{\odot}$, 27 M $_{\odot}$, 20 M $_{\odot}$ and 11 M $_{\odot}$, by the Garching Group [2]. Detailed GEANT4 simulation of the detector response to such flux.

Detection principle

Coincidences between PMTs on KM3NeT DOM are counted as a function of the number of hit PMTs (*multiplicity*);

High multiplicity selection allows to **suppress** bioluminescence and radioactive decays;

KM3NeT triggers are used to reject correlated events from atmospheric muons;

Rates as a function of the multiplicity are compared for signal and background in the figure below:

Detection sensitivity

after the filter, in a 500 ms time window.

Detection of SASI oscillations in the ν **light-curve**

Standing Accretion Shock Instability: anisotropic hydrodynamical instabilities predicted by state-of-the art 3D simulations.

SASI would enhance the neutrino heating, favouring the explosion. Observable as fast oscillations in the neutrino light-curve with a characteristic frequency \rightarrow spectral analysis of neutrino data

Figures below show the expected light-curve in ARCA (20 M_{\odot} at 5 kpc) using all coincidences (left), and the Fourier transform with a visible peak at **80 Hz** (right).

Sensitivity estimated searching for a energy excess in the power spectrum.

Real-time monitoring

Sliding window search: number of coincidences in the selection evaluated every 100 ms over a 500 ms time window.

ARCA and ORCA data are combined in a single trigger, alert generation with latency below 20 s.

Functional diagram of the real-time monitoring system in fig. below.

KM3NeT is now connected to the SNEWS network! [3] CCSN Alert sending: FAR < 1/8 days.

Currently operational: ORCA 6 DUs can trigger up to 5.4 and 9.5 kpc, correspondingly for the 11 M_{\odot} and 27 M_{\odot} progenitor flux.

End of 2020 prediction: ARCA 2 DUs + ORCA 10 DUs will be able to trigger up to 6.6 and 11.8 kpc for the 11 M_{\odot} and 27 M_{\odot} progenitor flux (10% to 75% Galactic coverage, respectively).

Follow-up of two unmodelled GW signals with 4 ORCA lines: S191110af (*retracted) and S200114f public alerts [4] CCSN neutrino search starting at the GW trigger time.

No significant excess found for the two alerts followed. Cfr. GCNs #26751(*) and #26249.

- Lower limits on the CCSN distance: 6 12 kpc.
- $\langle E_{
 u}
 angle = 15 \, {
 m MeV}$: $E_{
 u}^{90\%} \simeq 3 imes 10^{53} \, {
 m erg}$ at 10 kpc .

Follow up of LIGO-Virgo GW alerts

• Upper limits on the total energy emitted in neutrinos, assuming

References

[1] KM3NeT Collaboration, *J. of Phys. G 43 (8), 084001* (2016) [2] I. Tamborra et al., *Phys. Rev. D 90, 045032* (2014) [3] K. Scholberg, *arXiv:eprint: astro-ph/9911359* (2000) [4] https://gracedb.ligo.org/superevents/public/O3/

