

New results from BASKET innovative bolometers for the CEvNS detection

COHERENT ELASTIC NEUTRINO-NUCLEUS SCATTERING (CEvNS)

- Observed for the first time by the COHERENT collaboration in 2017;
- New way to probe physics beyond the standard model. It has phenomenological importance for:
 - improved constraints on the weak nuclear charge value;
 - \rightarrow dark matter direct detection;
 - → nuclear reactors monitoring;
 - →nuclear structure probes;
 - \rightarrow sterile neutrino searches;
 - → neutrino magnetic moment;
- For sufficiently low momentum transfer, a neutrino coherently scatters off all the nucleons of the target nucleus as a whole;
- nuclear
- The CEvNS signature is a standalone nuclear recoil with an energy ranging from 10's of eV to a few 10's of keV, depending on the E, and the nucleus target;
- Main advantage using this interaction instead of the standard neutrino detection channels is its **cross-section** (10 to 1000 times greater);
 - → the neutrino interaction probability increases with the square of the number of neutrons of the target nucleus;
- As consequence, a dramatic miniaturization of the detector size (from ton or kilo-ton scale to few kg).

energy [keV]

Beatrice Mauri on behalf of the BASKET Collaboration - beatrice.mauri@cea.fr IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

3000

2000

- $Li_2WO_4(Mo)$, a powerful compound:
- **Tungsten**: the heavy element provides a CEvNS rate increase;
- through Czochralski method with Mo doping at 5%;
- crystals with natural content of ⁶Li~8%.

Cylindrical Li₂WO₄(Mo) crystal (Φ =25mm):

1.Thermal sensor: Neutron Transmutation Doped (NTD) Ge sensor 2.Heater

Ge based (Neganov-Luke) Light Detector (LD) covered with SiO (44x0.17 mm)

The development and the characterization of the first BASKET detector prototypes are performed at the IJClab (Orsay, France), in above ground conditions.

DOPED SI SENSOR: PRELIMINARY RESULTS

NTD and doped Si sensor comparison

First measurement of the doped Si sensor coupled to a Li₂WO₄ crystal equipped also with an NTD sensor: comparison between the

Anone

Si pulse:

CONCLUSIONS AND NEXT ST

• The Li₂WO₄ shows promising performance to undertake the CEvNS detection; • First pulses ever observed using a doped Si-sensor coupled to a Li, WO, crystal; • Further improvements expected finalizing the analysis with a **biased Neganov-Luke** • In future, new tests will be performed using a new silicon sensor geometry and/or

Decay time ~2.3 ms

 \rightarrow bolometric tests using Li₂WO₄ crystals equipped with MMC sensors; → **Doped Si thermal simulations** to better understand the sensor behaviour.

R&D DETECTORS

• Lithium: useful to perform a neutron background study exploiting the ⁶Li(n,t) α reaction;

• crystals produced at the Nikolaev Institute of Inorganic Chemistry (Novosibirsk, Russia)

	420	υμπ		 	
					4200µ
			3888		

Cubic Li₂WO₄(Mo) crystal (1 cm³): 1. Thermal sensor: NTD

2. Thermal sensor: Doped (P, B) Si sensor 3. Heater

Thermal simulation

Static and dynamic thermal simulations of both NTD and

EPS	References				
; LD;	[1] 10.1126/science.aao0990 [2] 10.1016/j.nima.2019.162784 [3] 10.1103 /PhysRevD.9.1389.				
a larger surface;					