

•**TPC Active volume**: (6 x 6 x 6) m³

•Ionization event \rightarrow 3D position Ionization electrons drift vertically along E field towards extraction grid and sandwiches of large electron multipliers + **anode** (two strip-based collection views each forming a 2D image): Charge readout planes

- The peaks of waveforms of charge deposited in the strips are reconstructed as **hits**
- Scintillation light \rightarrow event timing Array of 36 photomultiplier tubes (PMTs) below cathode

2D reconstruction performance

- •2D pattern recognition tested in simulated cosmic ray environment
- Reconstruction efficiency > 90% except for *sparse* tracks parallel to readout strips
- •New algorithm making use of the width of charge deposition waveforms (**hit widths**) improves performance

In the above example, separate clusters are represented by different colours. First, the effect of turning hit widths on in the simulation is shown (2 \rightarrow 3), followed by the improvement due to a new cluster merging algorithm using hit widths information (3 \rightarrow 4), which leads to all adjacent collinear clusters being merged together.

(diagram above for definition), for a sample of single 2 GeV/c muons, with the standard cosmic reconstruction (black) and with the addition of the new hit width-based cluster merging algorithm (blue).

ProtoDUNE Dual-Phase

The Pandora Reconstruction for Dual-Phase Liquid Argon TPCs

Maria Brigida Brunetti (maria.brunetti@warwick.ac.uk) for the DUNE collaboration

Anode and **Dual-Phase** (DP) **LArTPC**: Readout _Large a candidate technology for the DUNE far detector Electron Multiplier **ProtoDUNE-DP**: a 300 t prototype at CERN Extraction Grid **Pandora** [1,2]: a multi-algorithm reconstruction

New Dual-Phase specific features

Procedure:

- 1. Find all cluster pairs
- 2. Identify cluster overlap region in drift coordinates
- 3. Build fractional charge profiles of clusters
- 4. Slide a window across the profiles and
- L = 1 p-value (p-value for measuring

Sketched example of a di-muon particle gun Monte Carlo event simulated in ProtoDUNE-DP.

based on advanced particle flow techniques

- Two algorithm chains for **cosmic** and **test beam** particles, including:
 - 2D pattern recognition
 - 2D \rightarrow 3D matching
 - 3D reconstruction
- Particles not tagged as clear cosmic rays are grouped in *slices*
- Each slice reconstructed with both cosmic and test beam algorithm chains, then best output selected

$2D \rightarrow 3D$ matching with calorimetry

•Aim: match 2D clusters across views to reconstruct 3D trajectories

•Only two non-parallel views required, but **redundant information** often necessary to correctly identify matches

•Two-collection view detectors such as ProtoDUNE

repeatedly calculate local matching score (L) a correlation coefficient (r), assuming true r=0) 5. L consistently close to 1 indicates correct match

Two Monte Carlo particle example

• Four possible cluster matches across two views

•Only two matches are correct

top-right and bottom-left images are correct matches, according to the simulation.

• Large number of algorithms to reconstruct particles in each event

