

Contribution ID: 389 Type: Poster

Development and optimisation of metallic magnetic calorimeter arrays towards ECHo-100k

The Electron Capture in 163 Ho (ECHo) experiment has been designed for the determination of the effective electron neutrino mass exploiting the electron capture spectrum of 163 Ho. The detector technology is based on metallic magnetic calorimeters (MMCs) loaded with 163 Ho and operated at millikelvin temperature. For the coming phase of the experiment, ECHo-100k, the planned activity per pixel is 10 Bq and the required number of pixels simultaneously operated will be 12000. Therefore, a new dedicated chip design has been prepared and microfabricated in order to improve detector performances, 163 Ho implantation efficiency and to allow for parallel and multiplexed read-out. The detector geometry and the 163 Ho host material have been studied in order to optimise the detector response and the energy resolution. In this contribution we present the new ECHo-100k design and the first results obtained with an external 55 Fe source.

Mini-abstract

The new 64-pixel MMC detector arrays meet the requirements for the next phase of the ECHo experiment

Experiment/Collaboration

ECHo collaboration

Primary authors: Ms MANTEGAZZINI, Federica (Kirchhoff Institute for Physics, Heidelberg University); Mr TOM, Wickenhäuser (Kirchhoff Institute for Physics, Heidelberg University)

Presenters: Ms MANTEGAZZINI, Federica (Kirchhoff Institute for Physics, Heidelberg University); Mr TOM, Wickenhäuser (Kirchhoff Institute for Physics, Heidelberg University)

Session Classification: Poster session 3