Neutrino 2020

Contribution ID: 92

Type: Poster

Atomic Tritium for Neutrino Mass Measurement in Project 8

Project 8 aims to determine the absolute neutrino mass via tritium β -decay using Cyclotron Radiation Emission Spectroscopy (CRES).

Good energy precision, high statistics, and well-controlled systematics will enable $m_{\beta} \leq$ 40-meV sensitivity. We have achieved eV resolution at 17.8 keV and will instrument our fiducial volume with spatially-resolving antennae to minimize pileup.

Project 8 is the first m_{β} experiment with atomic tritium (T), which is free of the ~ 1-eV energy smearing rovibrational final states induce in T₂ decay. The collaboration is preparing to produce, cool, and store ~ 10^{12} atoms/cm³ at ~ 30 mK in a 2 T-deep, multi-cubic-meter magnetic trap. Here we discuss results from atomic-source test stands and studies of loading and trapping for a single-cubic-meter-scale Atom Trapping Demonstrator to be built before the final Phase IV experiment.

Mini-abstract

Project 8 is preparing to measure the ν mass with 40-meV sensitivity using atomic tritium.

Experiment/Collaboration

Project 8

Primary author: LINDMAN, Alec (Johannes Gutenberg Universität Mainz)Presenter: LINDMAN, Alec (Johannes Gutenberg Universität Mainz)Session Classification: Poster Session 2