

Double Beta Decay

- Double beta decay $(2\nu\beta\beta)$ a rare standard model process $(T_{1/2} \sim 10^{18} 10^{21} yrs)$ has been observed in a number of isotopes including 100 Mo.
- As neutral leptons, neutrinos could be Majorana or Dirac particles. As Majorana particles, neutrinos could induce an additional decay mode $(0\nu\beta\beta)$ which would violate lepton number conservation.
- The transition mechanism is presently subject to considerable nuclear theory uncertainties.
- The half-lives are related to nuclear physics by the equations below where G is the phase space, M the nuclear matrix element and $m_{\beta\beta}$ the effective Majorana mass

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu} \left| M_{0\nu} \right|^2 \frac{m_{\beta\beta}^2}{m_e^2} \quad \frac{1}{T_{1/2}^{2\nu}} = G_{2\nu} \left| M_{2\nu} \right|^2$$

• Precision measurement of $2\nu\beta\beta$ to excited states helps constrain the nuclear models used to compute the nuclear matrix elements for both the $2\nu\beta\beta$ and $0\nu\beta\beta$.

The CUPID-Mo Experiment

CUPID-Mo, a demonstrator experiment for CUPID [1], consists of an array of $20 \sim 0.2$ kg enriched $Li_2^{100}MoO_4$ scintillating cryogenic calorimeters with 20 Ge wafer light detectors for particle discrimination, each instrumented with NTD's. CUPID-Mo has demonstrated excellent: (see [2], poster #404 by D.Poda)

- Energy resolution ($\sim 7 \,\text{keV}$ at $2615 \,\text{keV}$)
- Radiopurity (LMO ²³²Th, ²³⁸U $\leq 3 \mu Bq/kg$)
- α/β particle discrimination (> 99.9%)

Figure 1: Left: An individual CUPID-Mo bolometer. Right: The CUPID-Mo setup in the EDEL-WEISS cryostat.

Decays of ^{100}Mo

• We consider ¹⁰⁰Mo decays to both the 0^+_1 , 2^+_1 excited states of ¹⁰⁰Ru, where the two electrons are accompanied by one or two de-excitation γ 's

Figure 2: Left: Simulated $2\nu\beta\beta$ decay to 0^+_1 state; we see the two γ 's, the electrons are contained in the crystal. Right: Decay scheme of $2(0)\nu\beta\beta$ to excited states [3]

CUPID-Mo first sensitivity estimates to $2\nu\beta\beta(0\nu\beta\beta)$ **to excited states**

Toby Dixon for the CUPID-Mo Collaboration tdixon@berkeley.edu

Department of Physics, University of California at Berkeley

(1)

$0\nu\beta\beta/2\nu\beta\beta$ Signatures in CUPID-Mo

- We simulate signatures for $0\nu\beta\beta(2\nu\beta\beta)$ decay to the 0^+_1 , 2^+_1 excited states of 100 Ru in a detailed Geant4 MC simulation using the Decay0 event generator [4]. • We classify signatures into three sets, those involving 1, 2, 3 crystals.
- For a preliminary sensitivity estimate we focus on the first two sets.
- For $0\nu\beta\beta$ we look for peaks in the summed energy distribution of events depositing energy in two crystals (M2).
- For $2\nu\beta\beta$ the electrons can carry a variable amount of energy and we restrict ourselves to candidates with a photopeak of one of the gammas in the secondary crystal.

at 3034 keV, 2494 keV.

References

[1] The CUPID Interest Group CUPID pre-CDR arXiv:1907.09376 [2] Armengaud, et al., The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects. Eur. Phys. J. C 80, 44 (2020)

- [3] R.Arnold, et al., Measurement of double beta decay of ¹⁰⁰Mo to excited states in the NEMO 3 experiment, Nucl. Phys. A 781, 209, (2007)
- [4] O.A Ponkratenko et al., Phys. Atom. Nucl. 63, 1282 (2000)
- 5] F.Alessandria et al., Sensitivity and Discovery Potential of CUORE to Neutrinoless Double-Beta Decay arXiv:1109.04
- [7] A. S. Barabash, Double beta decay to the excited states: Review, AIP Conf. Proc. 1894, 020002 (2017)

[6] R. Arnold, et al., Investigation of double beta decay of 100 Mo to excited states of 100 Ru, Nucl. Phys. A, 925, 25 (2014)

- 0.9^m where m is the multiplicity
- prediction for each ROI
- and thus the significance $S/\sqrt{S+B}$

Decay	Energy 1 [keV]	Energy 2 [keV]	ε [%]	b [ckky]	ΔE [keV]	$\hat{T}_{1/2}$ [yrs]	$S/\sqrt{S+B}$
$2 uetaeta eta \ 0^+ o 0^+_1$	535 - 2494	540	0.69	10	3.6	-	4.6
$2 uetaeta eta \ 0^+ o 0^+_1$	585 - 2444	590	0.50	10	3.7	_	3.5
$2 uetaeta eta \ 0^+ o 2_1^+$	0 - 2494	540	1.0	15	3.6	2.4E21	_

Decay	Energy 1 +Energy 2 [keV]	ε [%]	b [ckky]	ΔE [keV]	$ \hat{T}_{1/2}$ [yrs]
$0 uetaeta eta \ 0^+ o 2_1^+$	3034	1.9	0.1	7.7	1.1E22
$0 u eta eta \ 0^+ o 0_1^+$	3034	0.36	0.1	7.7	2.1E21
$0 u eta eta \ 0^+ o 0_1^+$	2444	1.2	1	6.9	8.3E21
$0 u eta eta \ 0^+ o 0^+_1$	2494	1.1	1	7.0	7.6E21
			'		

Decay				
0 uetaeta	$0^+ ightarrow 2^+_1$			
0 uetaeta	$0^+ ightarrow 2^+_1$			

Table 3: Efficiencies, backgrounds and 90% CL sensitivities for M1 signatures for 0
uetaeta to excited states

- significance.

Decay	Predicted 90% CL sensitivity [yrs]	Current leading 90% CL limit [yrs			
$0 uetaeta ightarrow 2^+_1$	$1.4 \cdot 10^{23}$	$1.6 \cdot 10^{23}$ [3]			
$0 uetaeta ightarrow 0_1^+$	$1.1\cdot 10^{22}$	$8.9 \cdot 10^{22}$ [3]			
$2 uetaetaeta ightarrow 2_1^+$	$2.4 \cdot 10^{21}$	$2.5 \cdot 10^{21}$ [6]			
Table 4: Predicted CUPID-Mo Sensitivity and current leading limits					
Outlook for CUPID-Mo/CUPID					

- measurement of this decay.
- dedicated analysis.
- multiplicity events and use of the spectral shape.
- minimization of passive material between detectors.

Signal containment and Background

• We evaluate the signal containment efficiencies (ε) for various signatures using an energy dependent window of \pm FWHM/2 ($\Delta E/2$) and an analysis efficiency of

• Use a preliminary background model (see poster by P. Loaiza # 418) to make

• For the $2\nu\beta\beta$ to 0^+_1 state we compute S, B (expected number of signal and background counts) using the measured half-life from the NEMO-3 collaboration [3]

Table 1: Efficiencies, backgrounds and 90% CL sensitivities for $2\nu\beta\beta$ to excited states, predicted significance is given for the decay to 0^+_1 state.

Table 2: Efficiencies, backgrounds and 90% CL sensitivities for $0\nu\beta\beta$ to excited states.

Energy [keV]	ε [%]	b [ckky]	$\Delta E \; [\text{keV}]$	$\hat{T}_{1/2}$ [yrs]
3034	5.9	1E-2	7.7	8.6E22
2494	32.7	5.5	7.0	1.1E23

Predicted Sensitivities

• We expect to be able to make a measurement of $2\nu\beta\beta \rightarrow 0_1^+$ with $> 5\sigma$

• We can use these results to predict conservative experimental 90% exclusion sensitivities for the other decays, after final exposure of $\sim 2.5 \,\mathrm{kg} \cdot \mathrm{yr}$

• We use the background dominated formula from [5] (Gaussian stat) for $2\nu\beta\beta$ and take a numerical approach to estimate sensitivity for $0\nu\beta\beta$ (Poisson stat)

• Where we have multiple signatures we add them in quadrature.

• CUPID-Mo will be able to detect $2\nu\beta\beta \rightarrow 0^+_1$ and this will be a new independent

• The other results are competitive with the current limits [3,6] motivating a more

• Plan to optimize analysis in terms of gamma selection window, inclusion of higher

• Potential to explore new parameter space for these decays with **CUPID-Mo** and excellent discovery potential for CUPID with more than $\times 100$ in mass and a

