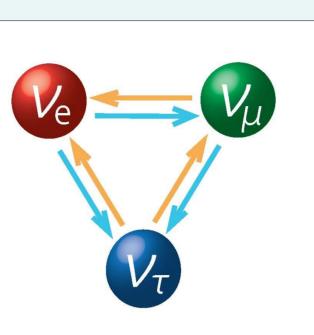
New approaches to the study of BSM models at DUNE Near and Far Detectors



Alessio Giarnetti

Roma Tre University & INFN

Neutrino oscillations

- Neutrinos change flavor while they travel
- Oscillation probabilties depend on 6 parameters

$$\theta_{12}/^{\circ} = 33.82^{+0.78}_{-0.76}$$
 $\theta_{13}/^{\circ} = 8.61^{+0.13}_{-0.13}$ $\theta_{23}/^{\circ} = 48.3^{+1.1}_{-1.9}$

$$\delta_{CP}/^{\circ} = 250^{+40}_{-33}$$

$$\Delta m_{21}^2 = 7.39_{-0.20}^{+0.21} \cdot 10^{-5} \ eV^2$$

$$|\Delta m_{3l}^2| = 2.52^{+0.03}_{-0.03} \cdot 10^{-3} \ eV^2$$

Three big questions!

- How big is δ_{CP} ? (NEW T2K RESULT!)
- Which is the sign of Δm_{3l}^2 ?
- Which is the θ_{23} octant?

+ BSM!

Role of $\nu_{\mu} \to \nu_{\tau} \ (\tau \to e)$ events in sterile neutrinos and propagation NSI searches

arXiv:1906.06212 (Ghoshal, Giarnetti, Meloni)

- The v_{τ} appearance probability in the 3+1 sterile neutrino model ($\Delta m_{14}^2 \sim 1~eV^2$) reads

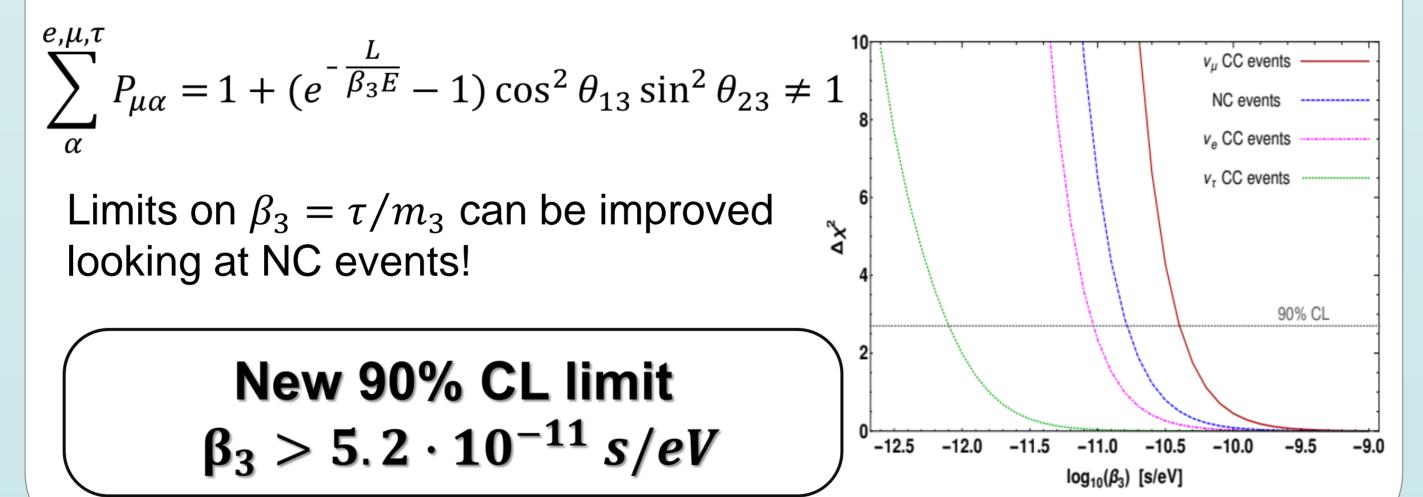
$$P_{\mu\tau} = 2|U_{\tau 4}|^{2}|U_{\mu 4}|^{2} + 4\Re\left[U_{\mu 3}^{*}U_{\tau 3}\left(U_{\mu 3}U_{\tau 3}^{*} + U_{\mu 4}U_{\tau 4}^{*}\right)\right]\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right)$$

$$-2\Im\left(U_{\mu 3}^{*}U_{\tau 3}U_{\mu 4}U_{\tau 4}^{*}\right)\sin\left(\frac{\Delta m_{31}^{2}L}{2E}\right)$$

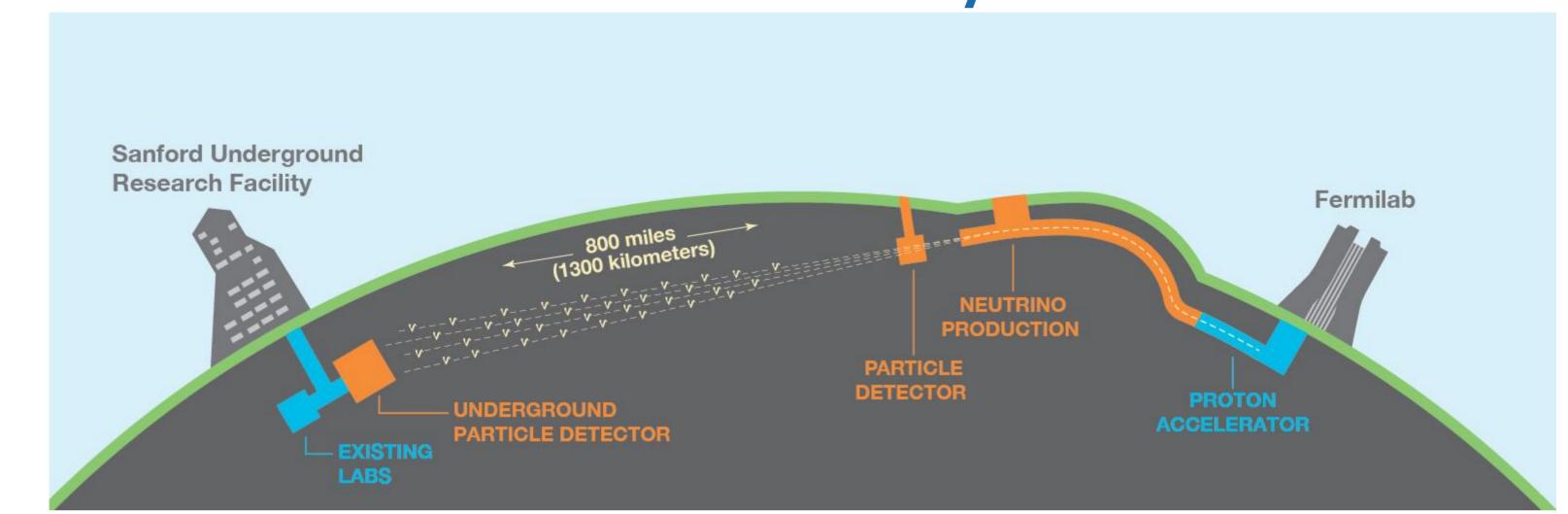
$$U_{\tau 4} \propto \sin\theta_{34}$$

New 90% CL limit θ₃₄<22°

- Considering Non-Standard-Interactions (NSI) in the neutrino propagation through matter, the the ν_{τ} appearance probability is


$$P_{\mu\tau} = P_{\mu\tau}^{SM} + \left(\frac{1}{2}\varepsilon_{\tau\tau}\cos^2 2\theta_{23} + 2\Re(\varepsilon_{\mu\tau})\cos 2\theta_{23}\right)AL\sin\left(\frac{\Delta m_{31}^2L}{2E}\right)$$

New 90% CL limit $|\varepsilon_{\mu\tau}|$ <0.20


Constraints on the Neutrino Invisible decay using NC events

arXiv:2003.09012 (Ghoshal, Giarnetti, Meloni)

If the third neutrino mass eigenstate decays into invisible particles, the number of active neutrinos is not conserved!

How can we answer the three questions and search for New Physics?

DUNE (Deep Underground Neutrino Experiment)

- 1300 km baseline
- World's most intense muon neutrino beam with a peak of the energy spectrum around 2.5 GeV
- 40 kt LAr-TPC Far Detector
- Multi purpose Near Detector complex with a 50 tons LAr-TPC as main detector

Huge number of neutrino events!

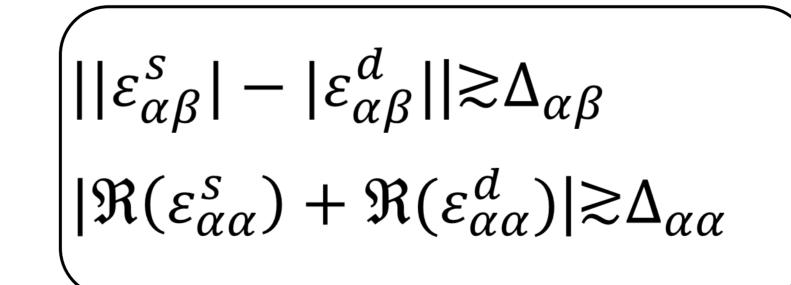
 $\nu_{\mu} \rightarrow \nu_{\mu} ~~ \& ~~ \nu_{\mu} \rightarrow \nu_{e}$ CC events: arXiv:2002.03008 (DUNE TDR)

NC events: arXiv:1707.05348 (Coloma, Forero, Parke)

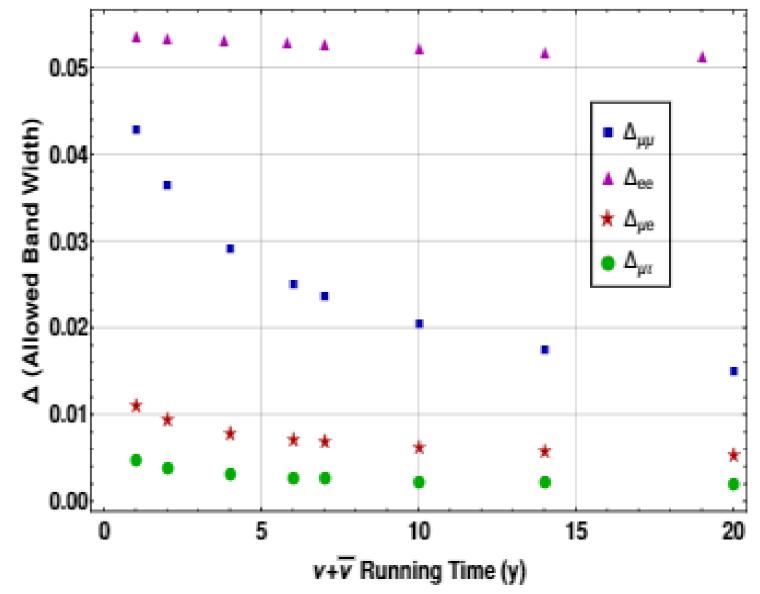
 $\nu_{\mu}
ightarrow
u_{\tau} (au
ightarrow h)$ CC events: arXiv:1904.07265 (De Gouvea, Stenico, Kelly, Pasquini)

 $\nu_{\mu} \rightarrow \nu_{\tau} \ (\tau \rightarrow e)$ CC events: arXiv:1906.06212 (Ghoshal, Giarnetti, Meloni)

Probing source and detector NSI at the DUNE Near Detector


arXiv:2005.10272 (Giarnetti, Meloni)

If we take into account the presence of NSI in neutrino production and detection, the probabilities at zero baseline read


$$P_{\alpha\alpha} = 1 + 2|\varepsilon_{\alpha\alpha}^{s}|\cos\Phi_{\alpha\alpha}^{s} + 2|\varepsilon_{\alpha\alpha}^{d}|\cos\Phi_{\alpha\alpha}^{d}$$

$$P_{\alpha\beta} = \left| \varepsilon_{\alpha\beta}^{s} \right|^{2} + \left| \varepsilon_{\alpha\beta}^{d} \right|^{2} + 2\left| \varepsilon_{\alpha\beta}^{s} \right| \left| \varepsilon_{\alpha\beta}^{d} \right| \cos(\Phi_{\alpha\beta}^{s} - \Phi_{\alpha\beta}^{d})$$

Using DUNE Near detector data, we can exclude at a given CL the parameter space regions

Δ-s decrease with data taking time!

