

Contribution ID: 288 Type: Poster

Indirect detection of dark matter at INO

Neutrino fluxes arising from WIMP annihilation in the center of the $sun(\odot)$, $earth(\oplus)$ and galaxy can leave detectable signatures at the proposed 50-kt Iron Calorimeter (ICAL)

detector at the upcoming India-Based Neutrino Observatory (INO). Although the atmospheric neutrinos will pose a

serious background to such signal neutrinos, exploiting the excellent angular resolution of the ICAL detector we can

suppress it considerably. The expected 90 % C.L. exclusion sensitivity limits for 500 kt-years exposure for $\tau^+\tau^-$ channel (100 % branching ratio)

for WIMP-nucleon Spin Dependent (σ_{SD}) and Spin Independent (σ_{SI}) cross-section are found to be $\sigma_{SD,\odot} < 6.87 \times 10^{-41}~{\rm cm}^2$ and $\sigma_{SI,\odot} < 7.75 \times 10^{-43}~{\rm cm}^2$ for the WIMP mass (m_χ) = 25 GeV, and $\sigma_{SI,\oplus} = 1.02 \times 10^{-44}~{\rm cm}^2$ for m_χ =52.14 GeV.

Mini-abstract

We present prospects of detection of dark matter annihilation signatures at INO

Experiment/Collaboration

INO

Primary author: Dr TIWARI, Deepak (PICO, University of Montreal)

Co-authors: GHOSH, Anushree; Prof. CHOUBEY, Sandhya (Harish-Chandra Research Institute)

Presenter: Dr TIWARI, Deepak (PICO, University of Montreal)

Session Classification: Poster session 4