

Neutrino Energy Estimation Techniques in NOvA Nitish Nayak University of California, Irvine (For the NOvA Collaboration)

1. NuMI Off-Axis v_e Appearance Experiment

- Upgraded NuMI muon neutrino beam at Fermilab (700 kW design)
- Longest baseline in operation (810 km), large matter effect (±30%), sensitive to mass hierarchy
- Far/Near detector sited 14 mrad off-axis, narrow-band beam around oscillation maximum

2. Detection Principle

- Tracking Calorimeter with Low-Z scintillator (mineral oilbased)
- Finely segmented
- Good $e^-/\mu^-/\pi^0$ separation
- Radiation Length ~ 6 cell depths -> Good energy resolution

3. v_e Energy Reconstruction

- Identify EM and hadronic clusters using a context-enriched CNN [1]
- Takes into account e/h detector response
 - Individual calorimetric energies are fit to true neutrino energy
 - $E(v_e) = A^*E_{EM} + B^*E_{HAD} + C^*E_{EM}^2 + D^*E_{HAD}^2$
 - Helps to keep resolution bias flat vs true energy
 - Overall neutrino energy resolution ~ 11%

Weighted Average True v E

EM Shower Energy (GeV)

- Significantly better performance! [2]
- A. Back, M. Groh ML applications in NOvA (Poster)

(RecoE-TrueE)/TrueE

Cal. Energy: 10.2%

CNN Energy: 8.9%

Kinematic Energy: 10.1%

NOvA Simulation

— Cal. Energy

— CNN Energy

Kinematic Energy-

- Use images of the v_eCC interaction directly and feed it into a regression based CNN
- Minimal reconstruction dependence
- Flattened input true neutrino energy distribution to control bias
- Better control over systematic
- uncertainties

5. v_{μ} Energy Reconstruction

- hits grouped by a kalman tracking algorithm
- Energy highly correlated with track length, resolution ~ 3%
- Hadronic energy estimated from visible hadronic activity using a spline-based fit
- Includes hadronic activity overlapping with muon track
- Takes into account different regions of phase space in the underlying interaction model
- Energy resolution ~ 26%
- $E(v_{\mu}) = E_{\text{muon}} + E_{\text{hadron}}$ with overall resolution ~ 6%

6. v_{μ} Energy - Further Improvements 4. v_e Energy - Further Improvements

- Tracking is more relevant for muons than calorimetry
- Makes more sense to use physicsrelated reconstructed quantities as input
- NOvA Simulation LSTM Kinematic μ: 6.0x10⁻³ μ: 5.9x10⁻³ σ: 5.3x10-2 σ: 6.2x10-2 Reco-True/True Energy
 - Feed track lengths, track energies etc into a LSTM-based RNN
 - Useful when number of inputs not known apriori
 - Similar unbiased training yields very promising improvements too!

[1]. F. Psihas, E. Niner, M. Groh et al. Phys. Rev. D 100, 073005

[2]. P. Baldi, J. Bian, L. Hertel, L. Li Phys. Rev. D 99, 012011