Latest Results of the Reactor Fuel Evolution Study at Daya Bay

8 identically designed antineutrino detectors

- 0.5 ²⁴¹Pu 0.45 Ratio = 0.183 80.0 0.04 0.35 0.4 ²³⁹Pu fission fraction
- Strong correlation between ²³⁹Pu and ²⁴¹Pu fission fractions.
- Residual S241 is corrected when fission fraction ratio deviates from 0.183

Neutrino 2020: The XXIX International Conference on Neutrino Physics and Astrophysics

Jianrun Hu, Institute of High Energy Physics, Beijing On behalf of the Daya Bay Collaboration

1) Fission fractions are evolving with respect to the fuel burning; 2) Different neutrino yields of the two primary isotopes: ²³⁵U and ²³⁹Pu

Phys. Rev. Lett. 123 (2019) 111801

•Use 1958 days' data to extract the ²³⁵U and ²³⁹Pu neutrino spectra by constraining the spectra of ²³⁸U and ²⁴¹Pu with model predictions. •Comparison with the Huber model prediction after normalization •Similar bump excess for ^{235}U and ^{239}Pu in 4~6 MeV.

•Significance of local deviations: 4σ for ^{235}U , 1.2σ for ^{239}Pu limited by larger

•First measurements of ²³⁵U and ²³⁹Pu neutrino spectra in commercial reactors. •Dominant uncertainty sources: statistics (~60%), and systematics from ²³⁸U and ²⁴¹Pu constraints (~35%).

• S_{combo} spectrum uncertainty: ~6% (~9% for 239 Pu-only)

• The extraction of the ²³⁵U and ²³⁹Pu spectra provide alternative reference for other reactor antineutrino

Reference

- T. A. Mueller et al., Phys.Rev. C83, 054615 (2011).
- P. Huber, Phys.Rev. C84, 024617 (2011).
- F P. An et al. (Daya Bay Collaboration), Nucl. Instrum .Meth. A811, (2016) 133–161
- F P. An et al. (Daya Bay Collaboration), Chinese Physics C, 2017, 41(1): 13002-013002
- F P. An et al. (Daya Bay Collaboration), Phys. Rev. Lett. 118.251801
- D. Adey et al. (Daya Bay Collaboration), Phys. Rev. Lett. 123 (2019) 111801

Phys. Rev. Lett. 118. (2017) 251801

• Define 'effective fission

detector.

fraction' observed by each

- The antineutrino reaction rate has an opposite trend to the effective fission fraction of ²³⁹Pu.
- •Extract the neutrino yields of ²³⁵U and ²³⁹Pu by constraining those of ²³⁸U and ²⁴¹Pu

$$\chi^{2} = (\sigma_{f} - F\sigma)^{T} V^{-1} (\sigma_{f} - F\sigma)$$
$$+ \sum_{238U, 241Pu} \frac{(\sigma_{i} - \overline{\sigma_{i}})^{2}}{\varepsilon_{i}^{2}}$$

- •Compared to the Huber model prediction:
 - 1) 7.8% deficit on ²³⁵U flux
 - 2) Consistent ²³⁹Pu flux.
- Prefer ²³⁵U responsible for the Reactor Antineutrino Anomaly.
- •Disfavor all isotopes with equal deficit (2.8 σ) or ²³⁹Pu solely responsible (3.2σ) .
- •Dominant uncertainty sources: statistics, detection efficiency

June 22 to July 2, 2020, USA