Near-to-Far Extrapolation in Transverse Momentum at NOvA Aaron Mislivec, University of Minnesota, for the NOvA Collaboration

Near-to-Far Extrapolation

The NOvA 3-flavor oscillation analysis extrapolates the Near Detector (ND) v_{μ} charged current (CC) E_{v} spectrum to the Far Detector (FD) to give a data-driven prediction of the v_{μ} disappearance and v_{e} appearance signals at the FD

Uncertainties on the extrapolated predictions are reduced by correlations between the functionally identical ND and FD in event selection, reconstruction, flux, and the neutrino interaction model

The extrapolation for v_{μ} disappearance is divided into 4 bins in hadronic energy fraction called quartiles. For v_e appearance the ND v_{μ} CC data and intrinsic beam v_{e} background are extrapolated separately

Near-Far Differences and Transverse Momentum

- 1. ND Data Reco E,
- 2. Reco-to-True E_v Weighting
- 3. ND True E,
- 4. Far / Near Ratio
- 5. Oscillations
- 6. FD True E,
- 7. True-to-Reco E_v Weighting
- 8. Predicted FD Reco E_v

The ND and FD differ in size,

p_t is also sensitive to data-MC differences arising from neutrino

Extrapolating in p₊ bins reduces the total neutrino interaction model uncertainty on the FD predictions and the measured oscillation parameters

Uncertainty in Δm_{32}^2 ($\times 10^{-3} \text{ eV}^2$) Uncertainty in δ_{CP} / π Extrapolating in p_t bins also reduces uncertainties that affect the reconstructed hadronic energy (e.g. Detector Calibration and Neutron Uncertainty), which results from correlation between the hadronic recoil and p₊

0.06

No $|\vec{p}_{t}|$ Extrap.

 $|\vec{p}_{t}|$ Extrap.

