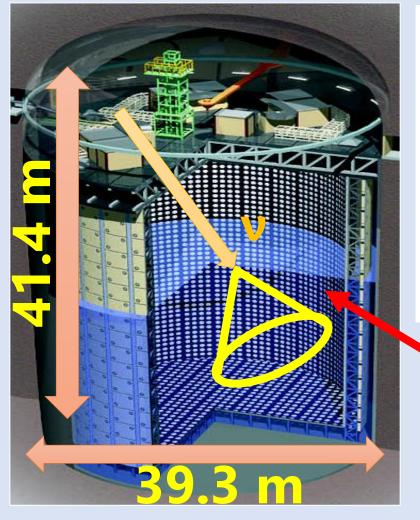


1. Abstract

Super-Kamiokande (SK), a 50 kton water Cherenkov detector in Japan, is observing solar neutrinos studying the effects of both the solar and terrestrial matter density on neutrino oscillations: a distortion of the solar neutrino energy spectrum would be caused by the edge of the Mikheyev-Smirnov-Wolfenstein resonance in the solar core, and terrestrial matter effects would induce a day/night solar neutrino flux asymmetry. On 2018 May, we finished taking data of SK-IV and started the refurbishment work toward SK-Gd. In this poster presentation, we overview the latest solar neutrino results in SK-IV, for example, the precise measurement of ⁸B solar neutrino flux, its energy spectrum and oscillation parameters. In addition, we discuss the future prospect of the new phase of SK-V (SK-Gd) including the background reduction thanks to the refurbishment work.


2. Physics motivation

- Search for MSW up-turn below ~5 MeV region. → Energy spectrum measurement with smaller uncertainty.

3. Super-Kamiokande

Detector and data set - More than 11,000 of 20-inch PMTs for the inner detector. - SK-IV ended in May 2018 for refurbishment work. - Resumed data taking as SK-V since January 2019.

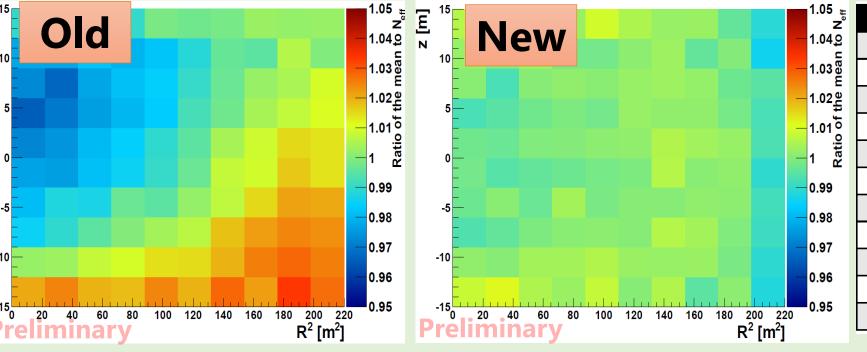
															l										
(1)	96	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
(2)			Sk	(-1				Sk	(-II		Sł	(-III					S	K-I	V					SK- SK-0	
(3)	³⁾ PMT 11,146 (40%)					5,182 (19%)			11,129 (40%)																
(4)	4.5 MeV					6.5 MeV			4.0 MeV			3.5 MeV													
(5)	⁾ 1496 days				791 days			548 days			2970 days														
(1) Year, (2) SK phase, (3) Photo coverage [%], (4) Recoil electron kinetic energy [MeV], (5)Livetime for analysis																									

Analysis fiducial volume 22.46 kton (FV). (2 meters inside from the PMTs)

- Solar neutrino measurement
- Neutrino-electron elastic scattering ($v_X + e^- \rightarrow v_X + e^-$).
- Energy reconstruction by counting # of hit PMTs in 50 nsec and applying some corrections: water transparency, event-geometry dependent effective PMT coverage, etc.

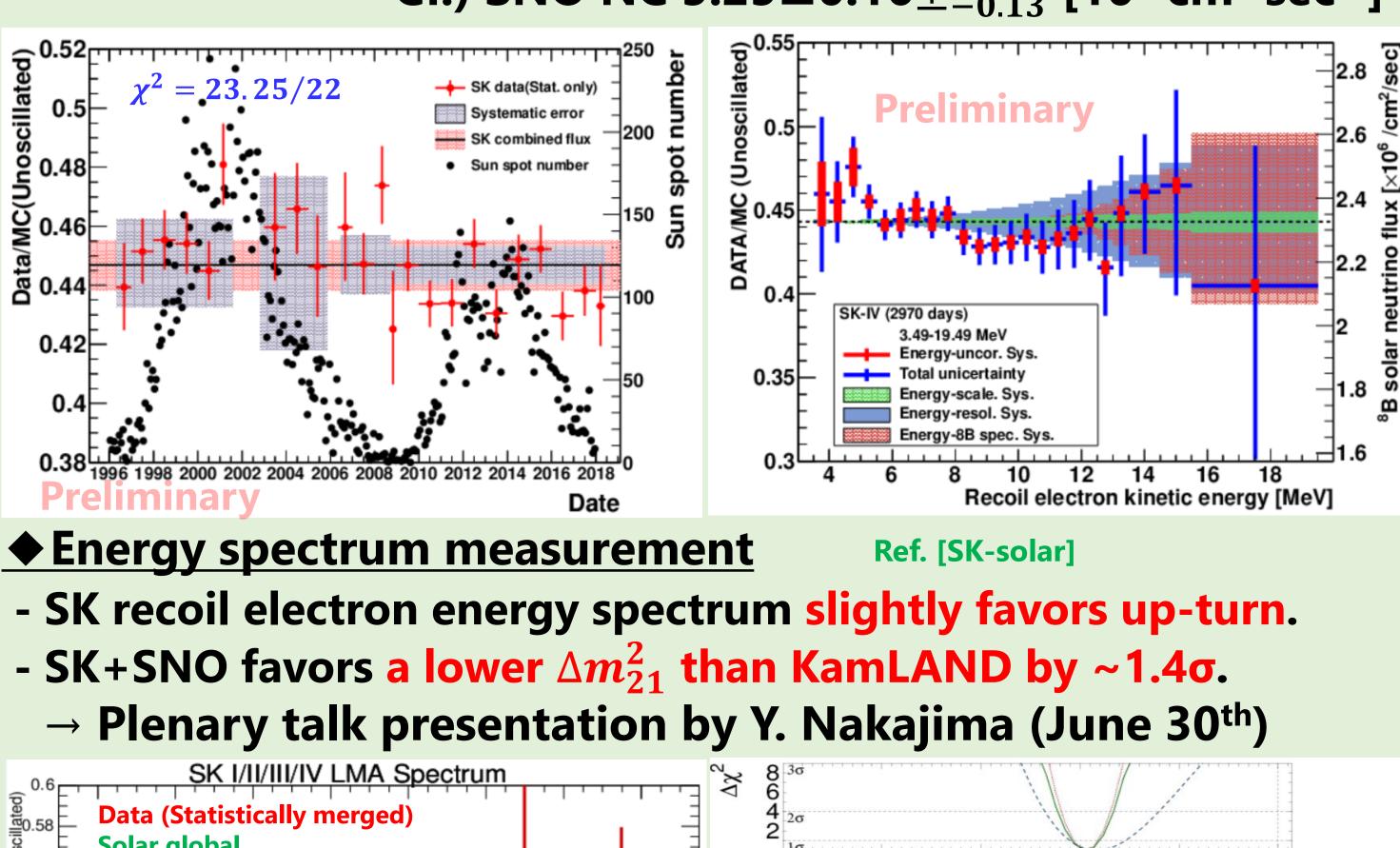
Latest solar neutrino analysis results from Super-Kamiokande

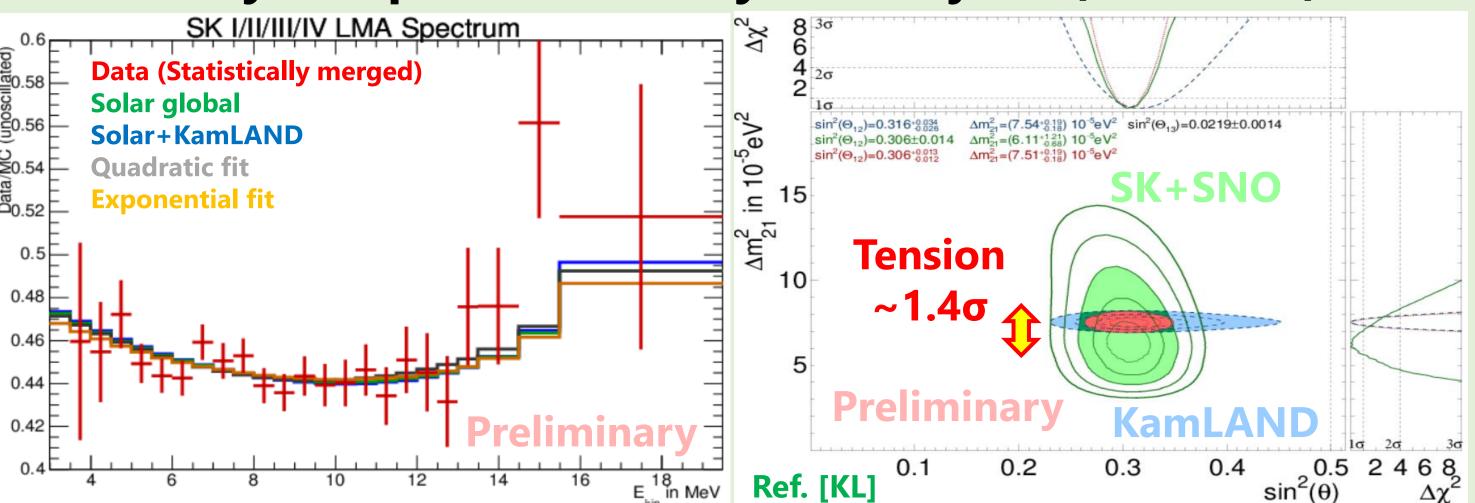
Yuuki Nakano (Kobe university) on behalf of the Super-Kamiokande collaboration (E-mail: <u>ynakano@phys.sci.kobe-u.ac.jp</u>) XXIX International Conference on Neutrino Physics and Astrophysics, June 22nd-July 2nd, 2020 (online)


Ref. [SK-det]

Ref. [MSW]

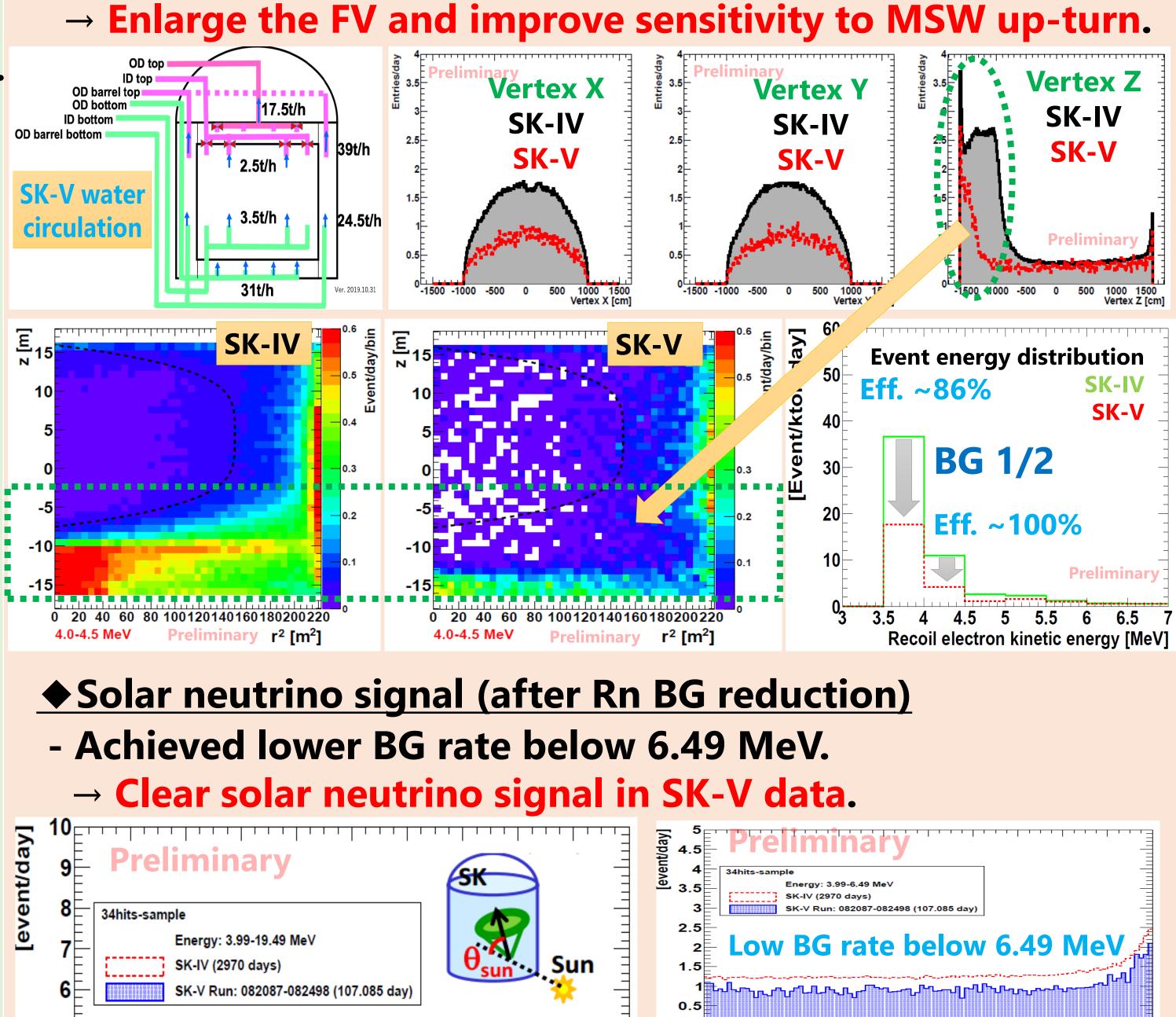
Ref. [SK-solar]


4. Improvement in analysis


- Software progress
- (1) New spallation cut with improved tagging efficiency (Spallation studies: S. Locke, Poster ID 166)
- (2) Position dependence of energy reconstruction (A) Non-uniformity of water transparency → Consider position of hit-PMT and reconstructed vertex.
 - (B) PMT photo coverage
- → Realistic response of PMTs in cylindrical shape is re-evaluated. Impact to analysis
- Position dep. of effective hit is reduced ($1.7\% \rightarrow 0.5\%$). - Successfully reduce systematic uncertainties < 5.49 MeV.

5. Results from SK-IV

Precise measurement of ⁸B solar neutrino flux - SK-combined: 2.346±0.011(stat.)±0.043(syst.) [10⁶ cm⁻²sec⁻¹]



3.49-3.99	3.99-4.49	4.49-4.99	4.99-5.49		
±1.8%	±0.7%				
±0.2%	±0.1%	±0.1%	±0.1%		
±1.0%	±0.7%	±0.5%			
±0.1%	±0.1%	±0.1%	±0.1%		
±0.5%	±0.4%	±0.2%	±0.2%		
±2.9%	±1.0%	±0.8%	±0.2%		
±2.1%	±2.1%	±2.1%	±0.7%		
±0.2%	±0.2%	±0.2%	±0.2%		
±0.5%	±0.4%	±0.4%	±0.4%		
±4.2%	+2.7% / -2.6%	±2.4%	±0.9 %		
	±1.8% ±0.2% ±1.0% ±0.1% ±0.5% ±2.9% ±2.9% ±2.1% ±0.2% ±0.5%	±1.8% ±0.7% ±0.2% ±0.1% ±1.0% ±0.7% ±0.1% ±0.1% ±0.5% ±0.4% ±2.9% ±1.0% ±2.1% ±2.1% ±0.2% ±0.2% ±0.5% ±0.4%	$\pm 1.8\%$ $\pm 0.7\%$ $\pm 0.2\%$ $\pm 0.1\%$ $\pm 0.1\%$ $$ $\pm 1.0\%$ $\pm 0.7\%$ $\pm 0.5\%$ $\pm 0.1\%$ $\pm 0.1\%$ $\pm 0.1\%$ $\pm 0.5\%$ $\pm 0.4\%$ $\pm 0.2\%$ $\pm 2.9\%$ $\pm 1.0\%$ $\pm 0.8\%$ $\pm 2.1\%$ $\pm 2.1\%$ $\pm 0.2\%$ $\pm 0.2\%$ $\pm 0.2\%$ $\pm 0.2\%$ $\pm 0.5\%$ $\pm 0.4\%$ $\pm 0.5\%$ $\pm 0.4\%$		

Cf.) SNO NC 5.25 \pm 0.16 $\pm^{+0.11}_{-0.13}$ [10⁶ cm⁻²sec⁻¹]

6. Status of SK-V data analysis

◆ Water flow optimization avoid such BG from entering the FV.

$\overline{}$	10 _E	
event/day	9	- Preliminary
ven	8	- 34hits-sample
<u>e</u>	7	Energy: 3.99-19.49 MeV
	6	SK-V Run: 082087-082498 (107.085 day)
	5	SK-IV (Full data set)
	4	
	3	-SK-V (34 hits)
	2	
	1	┶┓╘╍╍┶╼╍┚╕╌┚┊╘╼╍╍╍╶╓╍┶┶╍╍╌╍╍╶╍╍┚┍╍╢┠┑╔╓┵╼┶╍╍╍╍╍ ╴
	0_1	-08 -06 -04 -02 0 02 04 06

- The latest solar neutrino results from SK are presented. - New energy reconstruction enables SK to lower systematics. - Spectrum measurement gives strong constraint of *Pee* shape. - Tension between solar and KamLAND changes ~2.0 σ \rightarrow 1.4 σ . - Successfully reduce Rn BG events in SK-V. - Further sensitivity to MSW up-turn is expected in future.

Reference: [MSW] Sov. Jour. Nucl. Phys. 42, 913 (1985), Phys. Rev. D 17, 2369 (1978). [Solar-flux] Particle Data Group (2020). [SK-det] Nucl. Instrum. Meth. A 501, 418 (2003), Nucl. Instrum. Meth. A 737, 253 (2014). [SK-solar] Phys. Rev. D 73, 112001 (2006), Phys. Rev. D 78, (2008), Phys. Rev. D 83, 052010 (2011), Phys. Rev. D 94, 052010 (2016). [KL] Phys. Rev. D 88, 033001 (2013). [SK-Rn] J. Phys. Conf. Ser. 888, 012191 (2017), arXiv: 1910.03823.

Ref. [SK-Rn]

- BG events come from the detector structures (PMTs). \rightarrow Emanating Rn diffuses into the FV. Cleaning/wiping wall. (Radon BG modeling in SK/HK: G. Pronost, Poster ID 65) - Water flow (water temperature control) was optimized to

	$\begin{array}{c} 0.5 \\ 0.1 \\ -0.8 \\ -0.6 \\ -0.4 \\ -0.2 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.6 \\ 0.8$
0.8 1	5 4.5 4.5 3 4.5 3.5 5.5 5 2.5 3 2.5 3 2.5 3 1.5 3 1.5 1 0.5
cos _θ .	0 <u>-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1</u>

7. Summary