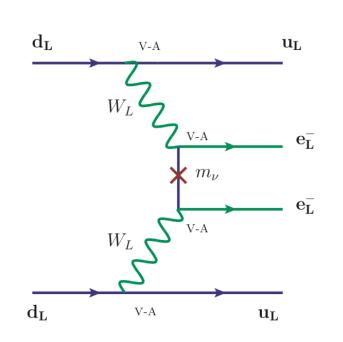


A COMPARATIVE STUDY OF $0\nu\beta\beta$ DECAY IN SYMMETRIC AND ASYMMETRIC LEFT-RIGHT MODEL

Published in Nucl. Phys. B954, 115000 (2020)

Supriya Senapati (Presenter)¹, Chayan Majumdar ¹, Sudhanwa Patra², Prativa Pritimita¹

¹Dept. of Physics, IIT Bombay, Maharashtra, India, Pin-400076 Dept. of Physics, IIT Bhilai, Chhattisgarh, India, Pin-492015 Template courtesy: https://www.overleaf.com/latex/examples/bound-states-in-the-continuum/bnghrghcdnfy

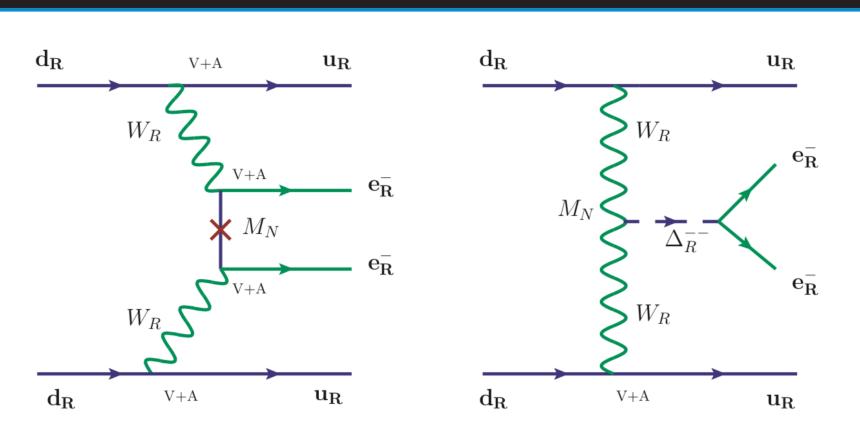

LEFT-RIGHT SYMMETRIC MODEL

- Theoretical predictions of Standard Model pass the tests of almost all collider discoveries so far.
- Though some discrepencies still persist :
 - Explanation of Small neutrino mass generation
 - Observed parity violation in low-energy weak interactions.
- ⇒ Under the umbrella of Left-Right symmetric Models (LRSMs)[1], we have a unified explanation for both of them.
- Gauge Group $\mathcal{G}_{LRSM}: SU(3)_C \otimes SU(2)_L \otimes$ $SU(2)_R \otimes U(1)_{B-L}$.

AIM

- New physics contributions to neutrinoless double beta decay $(0\nu\beta\beta)$ [2] in a TeV scale LR model with spontaneous D-parity breaking.
- Comparative study for three different cases; (i) for manifest symmetric left-right symmetric model ($g_L = g_R$), (ii) for LR model with spontaneous D parity breaking $(g_L \neq g_R)$, (iii) for Pati-Salam symmetry with D parity breaking $(g_L \neq g_R)$.

STANDARD $W_L - W_L$ MEDIATION


Figure 1: Standard $W_L - W_L$ mediation contribution.

Amplitude in neutrino mass basis,

REFERENCES

$${\cal A}_{LL} \simeq G_F^2 \sum_i \left(rac{{\cal V}_{ei}^{
u
u^2} m_i}{p^2} - rac{{\cal V}_{ei}^{
u S^2}}{M_{S_i}} - rac{{\cal V}_{ei}^{
u N^2}}{M_{N_i}}
ight)$$

Purely W_R-W_R mediation

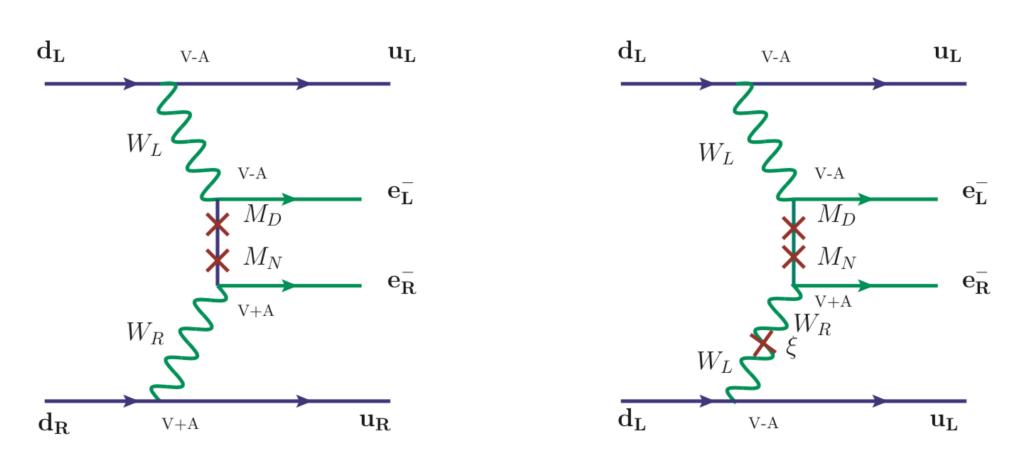


Figure 2: Left Panel: Standard $W_R - W_R$ contribution, Right Panel: Right-handed currents with doubly charged scalar exchange.

$$\mathcal{A}_{RR} \simeq G_F^2 \left(\frac{M_{W_L}}{M_{W_R}}\right)^4 \left(\frac{g_L}{g_R}\right)^4 \sum_i \left(\frac{\mathcal{V}_{ei}^{N\nu^2} m_i}{p^2} - \frac{\mathcal{V}_{ei}^{NS^2}}{M_{S_i}}\right)$$
$$-\frac{\mathcal{V}_{ei}^{NN^2}}{M_{N_i}}.$$

$$\mathcal{A}_{\Delta_R} \simeq G_F^2 \left(\frac{M_{W_L}}{M_{W_R}}\right)^4 \left(\frac{g_L}{g_R}\right)^4 \sum_i \frac{\mathcal{V}_{ei}^2 M_i}{m_{\Delta_R}^2}.$$

$\overline{W}_L - \overline{W}_R$ MIXED CONTRIBUTION

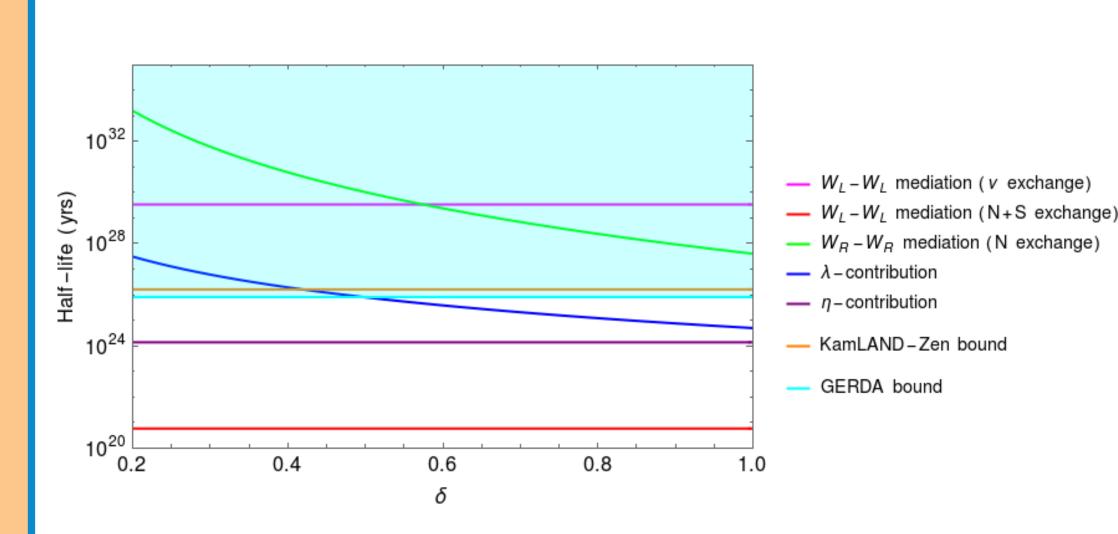
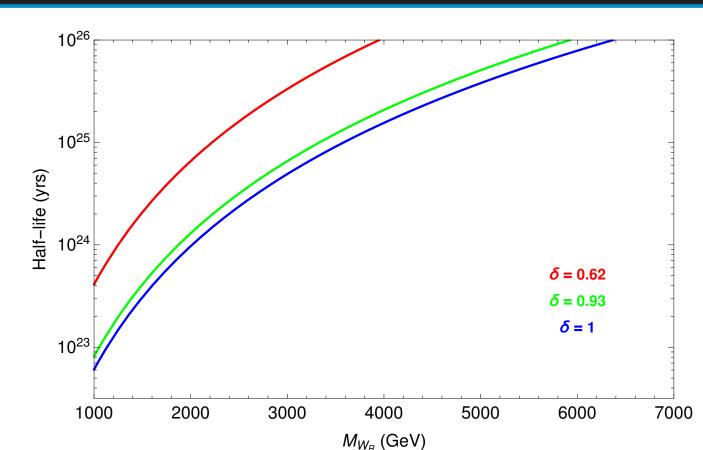


Figure 3: Mixed helicity λ and η diagrams.

$$\begin{split} \mathcal{A}_{LR} &\simeq G_F^2 \left[\left(\frac{M_{W_L}}{M_{W_R}} \right)^2 \left(\frac{g_L}{g_R} \right)^2 (1 + \tan \xi) + \tan \xi \right] \\ &\sum_i \left(\frac{\mathcal{V}_{ei}^{\nu \nu} \mathcal{V}_{ei}^{N \nu^*}}{\gamma.p} - \frac{\mathcal{V}_{ei}^{\nu S} \mathcal{V}_{ei}^{N S^*} \gamma.p}{M_{S_i}^2} - \frac{\mathcal{V}_{ei}^{\nu N} \mathcal{V}_{ei}^{N N^*} \gamma.p}{M_{N_i}^2} \right). \end{split}$$

• We will consider $\left(\frac{g_R}{g_L}\right) \equiv \delta$.


— v,L — S,L N,L 0.00 N,R $--v_{,\lambda}$ — S.λ

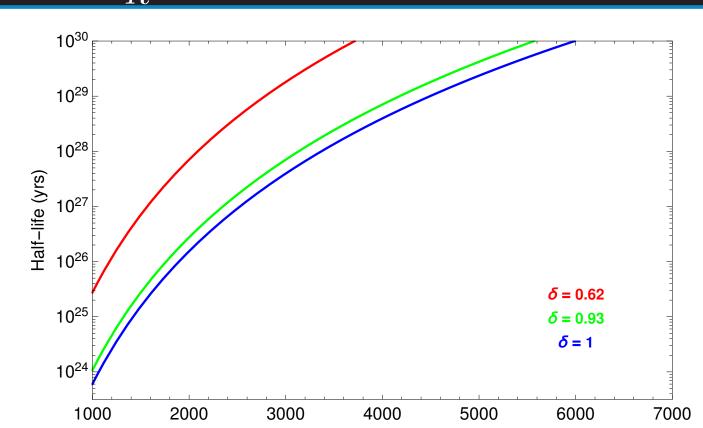
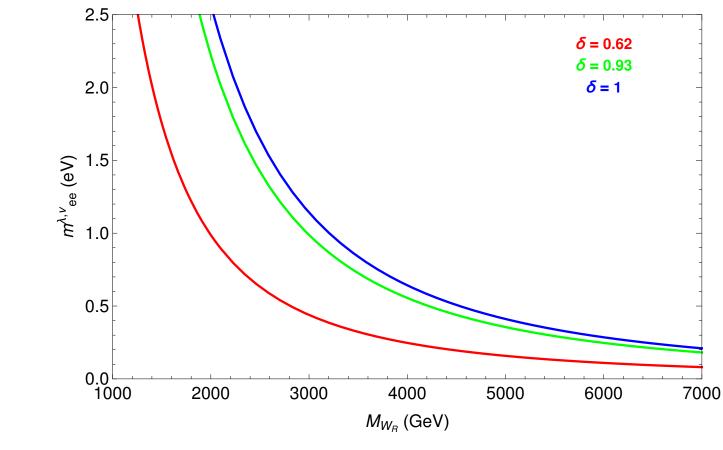

Figure 4: Dependence of half-life due to individual contribution on the ratio δ .

Figure 5: Dependence of effective mass parameters arising due to individual contribution on δ .

• Cyan shaded region in Fig.4 corresponds to allowed region for half-life permitted by GERDA experiment which is clearly saturating by various individual contributions within this framework.


Dependence of various parameters on M_{W_B} (for different δ' s)

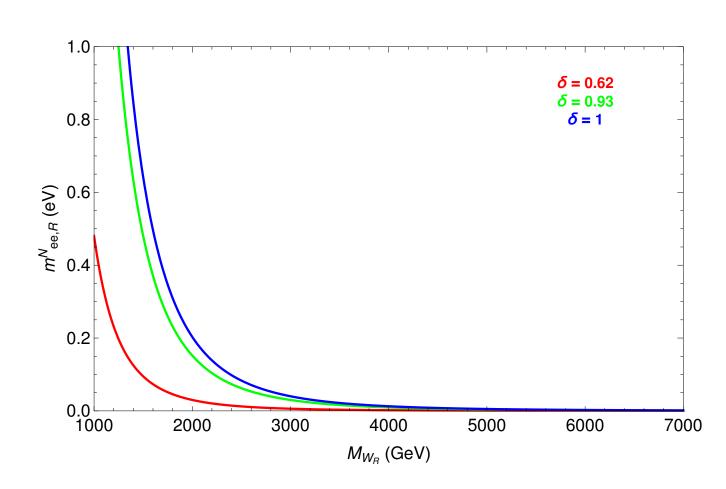


Figure 6: Dependency of half-life due to λ -contribution on

Figure 7: Dependency of half-life contribution due to RH neutrino exchange on M_{W_B} .

Figure 8: Plots for effective mass parameter due to λ diagram $vs M_{W_B}$.

Figure 9: Plots for effective mass parameter due to RH neutrino exchange $vs M_{W_B}$.

- [1] R. N. Mohapatra and J. C. Pati. "natural" left-right symmetry. Phys. Rev. D, 11:2558–2561, May 1975.
- [2] Chayan Majumdar, Sudhanwa Patra, Supriya Senapati, and Urjit A. Yajnik. $0\nu\beta\beta$ in left-right theories with Higgs doublets and gauge coupling unification. Nucl. Phys. B, 951:114875, 2020.
- We have considered $\delta = 1$ for symmetric LRSM, $\delta = 0.93$ or 0.62 corresponds to asymmetric LRSM without or with Pati-Salam symmetry.
- Introducing Pati-Salam symmetry, we have found a sizeable enhancement in half-life prediction with respect to asymmetric LRSM without Pati-Salam symmetry (Details can be found in arxiv:2001.09488).