Neutrino 2020

Contribution ID: 579

Type: Poster

A comparative study of $0\nu\beta\beta$ decay in symmetric and asymmetric left-right model

We study the new physics contributions to neutrinoless double beta decay $(0\nu\beta\beta)$ in a TeV scale left-right model with spontaneous D-parity breaking mechanism where the values of the $SU(2)_L$ and $SU(2)_R$ gauge couplings, $g_L \neq g_R$. Neutrino mass is generated in the model via gauge extended inverse seesaw mechanism. We embed the model in a non-supersymmetric SO(10) GUT. We compare the predicted numerical values of half life of $0\nu\beta\beta$ decay, effective Majorana mass parameter and other lepton number violating parameters for three different cases; (i) for manifest left-right symmetric model ($g_L = g_R$), (ii) for left-right model with spontaneous D parity breaking ($g_L \neq g_R$), (iii) for Pati-Salam symmetry with D parity breaking ($g_L \neq g_R$). We show how different contributions to $0\nu\beta\beta$ decay are suppressed or enhanced depending upon the values of the ratio $\frac{g_R}{g_L}$ that are predicted from successful gauge coupling unification.

Mini-abstract

Comparative Study of $0\nu\beta\beta$ in symmetric and symmetric LRSM

Experiment/Collaboration

Primary author: SENAPATI, Supriya (IIT Bombay)

Co-authors: MAJUMDAR, Chayan (IIT Bombay); Dr PRITIMITA, Prativa (IIT Bombay); Dr PATRA, Sudhanwa (IIT Bhilai)

Presenter: SENAPATI, Supriya (IIT Bombay)

Session Classification: Poster session 3