

THE NOVA EXPERIMENT

The NOvA Experiment is a long-baseline neutrino oscillation experiment.

- → Primarily probing mixing parameters of the three-flavor neutrino
- paradigm (θ₂₃, Δm²₃₂, δ_{CP})
 → NOvA is also able to look for evidence of more exotic phenomena such as **sterile neutrinos**, which do not interact via the weak force

SELECTION OF NC EVENTS

STRATEGY

QUALITY → Must have reconstructed vertex

- $\rightarrow \geq 1$ reconstructed particle (prong)
- → Must have extent > 2 planes
- \rightarrow Must not be v_{\parallel} or v_{ρ} candidate

FIDUCIAL

→ Vertex must be in fiducial volume → Distance from prong extrema to detector edge must be large

CVN & BDT

- \rightarrow A Convolutional Visual Network^[2] is used to distinguish between NC and CC interactions
- → A Boosted Decision Tree is used for cosmic rejection at the far detector

http://novaexperiment.fnal.gov

Event Selection and Systematic Uncertainties for the NOvA Sterile Neutrino Search Adam Lister and Anne Norrick, for the NOvA Collaboration

STERILES AT NOVA

→ Active-to-sterile oscillations could manifest as **deficit of NC events**^[1] → Two detector fit will expand available phase space

FIGURE OF MERIT

CVN and BDT cut values tuned jointly using a bin-wise figure of merit

 \rightarrow **S**_i is the number of signal events in bin *i* $\rightarrow \vec{B}_{i}$ is the number of background events in bin *i* $\rightarrow \sigma_i$ is the systematic uncertainty in bin *i* FOM prefers tight CVN cut in ND, loose cut in FD

PREDICTED EVENTS

MOVING FORWARD

The NOvA collaboration is pursuing a two-detector, covariance matrix-based fit to expand the available phase space of a sterile neutrino search. The selection and systematic uncertainties outlined in this poster represent a first step towards that search.

 \rightarrow J. Hewes

|1| [2] [3] [4] [5]

SYSTEMATIC UNCERTAINTIES

NOVA STERILE NEUTRINOS IN THIS SESSION

- Poisson Likelihood Covariance Technique for 3+1 Sterile Neutrino Searches in NOvA → M. Wallbank - Sterile Neutrino Search via Neutral-Current Disappearance with Antineutrinos in NOvA

REFERENCES

NOvA Collaboration, **DOI 10.1103/PhysRevD.96.072006** (2017) NOvA Collaboration, **DOI 10.1103/PhysRevD.100.073005** (2019) R. Gran, J. Nieves, F. Sanchez, and M. J. Vicente Vacas, Phys. Rev. D88, 113007 (2013) M. Martini and M. Ericson, **Phys. Rev. C87, 065501** (2013) G. Megias, J. Amaro, M. Barbaro, J. Caballero, T. Donnelly, and I. Ruiz Simo, Phys. Rev. D94, **093004** (2016)

 \rightarrow In the NOvA 3-flavor oscillation analyses, the Near Detector data is used to constrain the cross section uncertainties, but this is not viable as there could be oscillations in the near detector. → Instead we use *a priori* cross section uncertainties from GENIE v3_00_06, and rely on the Valencia model^[3] for our MEC events, with an uncertainty based on a model spread uncertainty from the Martini MEC^[4] and SuSA MEC^[5] models.

Nieves et al. MEC (GENIE) Martini et al. MEC (PRC 80, 065501)	
Megias et al. MEC (PRD 94, 093004)	
$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}$	

