

Beta-processes in supernova

- Core-collapse supernova is the final stage of an evolution for stars with a mass $M_{\rm star} \gtrsim 10 M_{\odot}$
- β -processes are the dominant neutrino processes in the **supernova** (SN) matter:
 - 1: $p + e^- \rightarrow n + \nu_e$ 2: $n + \nu_e \rightarrow p + e^-$ 3: $n + e^+ \rightarrow p + \bar{\nu}_e$ 4: $p + \bar{\nu}_e \rightarrow n + e^+$
- A SN magnetic field can enhance and support the neutrino-driven mechanism which is responsible for a revival of the initially stalled shock wave in the core-collapse SN
- The region of the neutrino interaction with the SN matter due to β -processes

 $\overline{\nu}_e p \leftrightarrow ne^+$ Free Thermal Equilibrium streaming $v_e n \leftrightarrow pe^-$

Conditions and assumptions

- Arbitrary strength of magnetic field $b = B/B_e$, where $B_e = m_e^2/e \simeq 4.41 \times 10^{13}$ G is the critical Schwinger value
- Nucleons are non-degenerate
- e^-e^+ -plasma is moderately degenerate \Rightarrow $\tau = \mu_e / T \lesssim 10$ μ_e is the electron chemical potential T is the temperature of the matter
- e^-e^+ -plasma is ultra-relativistic
- SN explosion is spherically symmetric \Rightarrow neutrinos propagate along a radial direction in the SN
- In such a matter, distribution functions of $e^{-}, e^{+}, \nu_{e}, \bar{\nu}_{e}$ can be approximated by " α -fit" [1] $\implies s, \bar{s}, \alpha, \bar{\alpha}$ are pinching parameters for electrons (positrons) and (anti)neutrino

Influence of magnetic field on beta-processes in neutrino-driven supernova explosion

Alexandra Dobrynina^{1,2} & Igor Ognev¹

¹P. G. Demidov Yaroslavl State University, Russia & ²University of Hamburg, Germany

Analytical results

Energies $Q^{(i)}$ transferred from neutrino and antineutrino to the matter through the β -processes (1) - (4)are calculated in the presence of a magnetic field [2]:

$$\begin{aligned} Q^{(1)} &= G^2 N_p N_0 \, \varepsilon_1^3 \, s^s \, \Gamma^{-1}(s) \\ &\times \left[n_\nu \, I_{s+\alpha-3,s+\gamma\alpha}(\varepsilon_1,b) - I_{s,s}(\varepsilon_1,b) \right], \\ - g_{va} \cos\beta \, \chi_1 \, n_\nu \, J_{s+\alpha-3,s+\gamma\alpha}(\varepsilon_1,b) \right], \\ Q^{(2)} &= G^2 N_n N_0 \, \varepsilon_1^3 \, e^{-\tau} \, s^s \, \Gamma^{-1}(s) \\ &\times \left[n_\nu \, I_{s+\alpha-3,s+\gamma\alpha-\gamma_t}(\varepsilon_1,b) \right], \\ - g_{va} \cos\beta \, \chi_1 \, n_\nu \, J_{s+\alpha-3,s+\gamma\alpha-\gamma_t}(\varepsilon_1,b) \\ - g_{va} \cos\beta \, \chi_1 \, \bar{n}_\nu \, J_{s+\alpha-3,s+\gamma\alpha-\gamma_t}(\varepsilon_1,b) \\ &\times \left[\bar{n}_\nu \, I_{\bar{s}+\bar{\alpha}-3,\bar{s}+\bar{\gamma}\bar{\alpha}}(\bar{\varepsilon}_1,b) - I_{\bar{s},\bar{s}}(\bar{\varepsilon}_1,b) \right], \\ Q^{(4)} &= G^2 N_p \bar{N}_0 \, \bar{\varepsilon}_1^3 \, e^{\tau} \, \bar{s}^{\bar{s}} \, \Gamma^{-1}(\bar{s}) \\ &\times \left[\bar{n}_\nu \, I_{\bar{s}+\bar{\alpha}-3,\bar{s}+\bar{\gamma}\bar{\alpha}-\bar{\gamma}_t}(\bar{\varepsilon}_1,b) \right], \\ Q^{(4)} &= G^2 N_p \bar{N}_0 \, \bar{\varepsilon}_1^3 \, e^{\tau} \, \bar{s}^{\bar{s}} \, \Gamma^{-1}(\bar{s}) \\ &\times \left[\bar{n}_\nu \, I_{\bar{s}+\bar{\alpha}-3,\bar{s}+\bar{\gamma}\bar{\alpha}-\bar{\gamma}_t}(\bar{\varepsilon}_1,b) \right], \end{aligned}$$

Here, $G^2 = (g_v^2 + 3g_a^2)/(2\pi)\cos^2\theta_c G_F^2$, $g_{va} = (g_a^2 - g_a^2)/(2\pi)\cos^2\theta_c G_F^2$ $(g_v^2)/(3g_a^2+g_v^2), \chi_{1,2}$ are the first two neutrino angular momentums, n_{ν} is the reduced neutrino number density, N_0 is the unmagnetized number densities of electrons, N_n and N_p are the neutron and proton number densities, $\gamma = \varepsilon_1/\omega_1$ is the ratio of the average electron energy to the neutrino one, $\gamma_t = \varepsilon_1/T$, $\cos\beta$ is the cosine of the angle between magnetic field strength and radial direction. All quantities with the bar-symbol correspond to positrons or antineutrinos.

The magnetic-field dependence enters $Q^{(i)}$ only through the functions:

$$\begin{split} I_{k,\varkappa}(\varepsilon_{1},\boldsymbol{b}) &= \varkappa^{-k-3} \Gamma(k+3,\varkappa \boldsymbol{z}_{\boldsymbol{b}}) \\ &+ \varkappa^{-k-1} \frac{\boldsymbol{b} m_{e}^{2}}{2\varepsilon_{1}^{2}} \Big[\Gamma(k+1) - \Gamma(k+1,\varkappa \boldsymbol{z}_{\boldsymbol{b}}) \Big], \qquad \qquad H \\ J_{k,\varkappa}(\varepsilon_{1},\boldsymbol{b}) &= \varkappa^{-k-1} \frac{\boldsymbol{b} m_{e}^{2}}{2\varepsilon_{1}^{2}} \Gamma(k+1), \qquad \qquad H \end{split}$$

where $\boldsymbol{z_b} = (m_e/\varepsilon_1)\sqrt{1+2b}$. For the β -processes (1)-(4), the heating rate has the form:

$$Q(B, \cos \beta) = Q^{(1)} + Q^{(2)} + Q^{(3)} + Q^{(4)}$$

blue: t = 10 sec; violet: t = 13 sec.

Numerical results

We used the results of **1D PROMETHEUS**-**VERTEX simulations** [3]. In this analysis, the SN progenitor mass is equal to 27 M_{\odot} and the final neutron star has a baryonic mass 1.76 M_{\odot} .

Analytical expressions for reaction rates of β processes as well as energy and momentum transferred from neutrinos and antineutrinos to the matter are obtained. Details of these calculations can be found in [2]. Modifications of the macroscopic quantities by the magnetic field with the strength $B \sim 10^{15}$ G are of a few percents only \Rightarrow magneticfield effects can be safely neglected, considering neutrino interaction and propagation in a supernova matter.

[3] L. Hüdepohl. PhD thesis, Technische Univ. München, 2014.

The work was supported by the Russian Science Foundation (Grant No. 18-72-10070). We are thankful to H.-T. Janka and his group for providing us with the data of the supernova explosions and for helpful discussions.

R (in km) is the distance from the PNS center (in sec) is the time after a bounce Red lines: t = 0.1 sec; orange: t = 0.5 sec; yellow: = 1.5 sec; green: t = 4 sec; cyan: t = 5.5 sec;

The dashed parts of the lines correspond to supernova regions where the electron-positron plasma is no longer ultrarelativistic.

Conclusion

References

[1] M.T. Keil, G.G. Raffelt, and H.-T. Janka. ApJ, 590(2):971-991, 2003.

[2] A. Dobrynina and I. Ognev. *Phys. Rev. D*, 101(8):083003, 2020.

Acknowledgements

Contact Information

• Email: dobrynina@uniyar.ac.ru

• Email: ognev@uniyar.ac.ru