

INTRODUCTION

The GERDA experiment [1] is searching for neutrinoless double- β decay ($0\nu\beta\beta$) of ⁷⁶Ge operating bare detectors, made of germanium with an enriched ⁷⁶Ge fraction, in liquid argon [2]. The signal would be a peak at $Q_{\beta\beta} = 2039.061 \pm$ 0.0007 keV. Under the assumption that no signal could be claimed, we will present the models and the procedures used to derive a preliminary limit on $T_{1/2}^{0\nu}$ (the $0\nu\beta\beta$ decay half-life) based on the Phase-II final data.

PRELIMINARIES

The analysis proceeds as follows:

- events with a reconstructed energy in the interval $Q_{\beta\beta} \pm$ 25 keV are not analysed but only stored on disk
- continuous monitoring of detectors
- freezing of analysis procedure and parameters
- blinded events are processed.
- data analysis of events detected in the analysis window 1930 – 2190 keV excluding the 2 gamma line regions [1]

Close monitoring of each detector allows us to:

- obtain values of parameters that affect the data analysis and model selection later described:
 - efficiencies
 - energy resolution (reported as Full Width Half Maximum, FWHM)
- create data partitions:
 - cut data with respect to different detectors
 - cut data with respect to time windows that share the same constant parameters

With these cuts we identify 383 different partitions.

		_								
det 1	FWHM									
	ε _{psd}									
	ε _{LAr}									
	ε _{Det}									
	$\sigma_{_{\rm FWHM}}$									
	σ _E									
	$\sigma_{_{PSD}}$									
det 2	FWHM									
	$\epsilon_{_{PSD}}$									
det 3	FWHM									
				Ú	\bigcup	U			U	Ú
		run53	run54	run55	run56		run93	run95		run114

Events detected in the analysis window (excluding those in the blinded window) are used to investigate the shape of the background distribution.

We test the hypothesis of a flat background by means of a test-statistic derived from Order-Statistic, which models the distribution of ranked statistical samples.

The goodness-of-fit of order k is estimated with the p-value derived from the distribution of the sum of the k smallest spacings in the energy spectrum.

The flat background hypothesis is not rejected by this test.

Statistical methods for the new data release of GERDA

M. Agostini², A. Caldwell¹, O. Schulz¹, <u>L. Shtembari¹</u> on behalf of the GERDA collaboration

¹ Max-Planck-Institut für Physik, München, Germany ² Technische Universität München, Physik-Department, München, Germany

LIKELIHOOD

The parameter of interest for our analysis is the strength of a possible $0\nu\beta\beta$ decay signal-rate: $S = 1/T_{1/2}^{0\nu}$.

The number of expected $0\nu\beta\beta$ events in the *i*th partition P_i as a function of *S* is given by:

$$u_i^S = \ln 2 \left(N_A / m_a \right) \, \epsilon_i \mathcal{E}_i S$$

where:

- ϵ_i : signal efficiency of the *i*th partition. Accounts for:
 - fraction of ⁷⁶Ge in the detector material
 - fraction of the detector active volume
 - efficiency of the analysis cuts (PSD and LAr)
 - probability that all the energy from the $0\nu\beta\beta$ decay is deposited in the active volume
- \mathcal{E}_i : exposure
 - total exposure of Phase-II is $103.7 kg \cdot yr$
- m_a : ⁷⁶Ge molar mass

The total number of expected background events as a function of the background index BI_i is:

$$\mu_i^B = \mathcal{E}_i \operatorname{BI}_i \Delta E$$

where $\Delta E = 240 \ keV$ is the width of the energy region around $Q_{\beta\beta}$ used for the fit.

Each data partition P_i is fitted with an unbinned likelihood function where we assume a flat distribution for the background and a Gaussian distribution for the signal:

$$\mathcal{L}_i(P_i|S, \mathsf{BI}_i) = \prod_{j=1}^{n_i} \frac{1}{(\mu_i^B + \mu_i^S)} \left[\mu_i^B \frac{1}{\Delta E} + \mu_i^S \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(\frac{-\left(E_j - Q_{\beta\beta}\right)^2}{2\sigma_i^2}\right) \right]$$

where:

- n_i : total number of events observed in the *i*th partition
- *E_i*: individual event energies in the *i*th partition
- $\sigma_i = FWHM_i/(2\sqrt{2ln2})$: energy resolution in ROI
 - the average FWHM across partitions is 3.29 *keV*

The total likelihood is constructed as the product of all \mathcal{L}_i weighted with the Poisson term:

$$\mathcal{L}(\mathbf{P}|S, \mathbf{BI}) = \prod_{i=1}^{\infty} \left[\frac{\exp\left(-\left(\mu_i^B + \mu_i^S\right)\right) \left(\mu_i^B + \mu_i^S\right)^{n_i}}{n_i!} \cdot \mathcal{L}_i(P_i|S, \mathrm{BI}_i) \right]$$

where $P = \{P_1 ... P_i ... \}$ and $BI = \{BI_1 ... BI_i ... \}$.

The statistical analysis is performed in a Bayesian framework where the combined posterior probability density function is calculated according to Bayes' theorem:

 $\mathcal{P}(S, \boldsymbol{BI}|\boldsymbol{P}) \propto \mathcal{L}(\boldsymbol{P}|S, \boldsymbol{BI})\mathcal{P}(S) \mid \mathcal{P}(BI_i)$

The c differe

- B
- Co
- *In*
- The ways
- Sii INC
- Un ha
- Co a

The requi

where distrik and r

Com exper

- the po
- $T^{(}$
- the p
- Th ar

The packa [1] Ack decay

[2] Ag β deca

detectors in the experiment can be subdivided in three ent types: EGe: Broad Energy Geranium detectors	In the ar preliminary The follow inclusion c
v-Coax: Inverted Coaxial detectors	The poste data analy
background index (BI) can be treated in 3 different , which gives rise to 3 different models: Ingle background index: there is only one background dex for all detector types $BI \sim Uniform$ Incorrelated background indices: each detector type is its own independent BI in the data analysis $BI_i \sim Uniform$ Dirrelated Background indices: each detector type has	Analysis. T uniform an 30 10 25 10 10 5
different BI but they are all correlated	0 — — — 10 ⁻³
inclusion of correlations amongst detector types res the use of a hierarchical model: $\sigma_{BI} \sim Uniform$ $m_{BI} \sim Uniform$ (σ^2)	The prelim models ar the latest F
$BI_i \sim LogNormal\left(\ln(m_{BI}) - \frac{\sigma_{BI}}{2}, \sigma_{BI}\right)$	(Unifo
e σ_{BI} and m_{BI} are the hyperparameters that control the	$(1/\sqrt{S})$
oution of the background indices for each detector type epresent the standard deviation and mean respectively.	The most
epresent the standard deviation and mean respectively. baring the performance of each model with simulated riments using synthetic data we find that:	The most for the sing (Phase-
bution of the background indices for each detector type epresent the standard deviation and mean respectively. Dearing the performance of each model with simulated riments using synthetic data we find that: e single BI model, on average, has a stronger discovery ower, since it can reconstruct a larger portion of an ected signal event	The most for the sing (Phase- The other ∑ 2500-
bution of the background indices for each detector type epresent the standard deviation and mean respectively. Dearing the performance of each model with simulated riments using synthetic data we find that: e single BI model, on average, has a stronger discovery ower, since it can reconstruct a larger portion of an ected signal event e uncorrelated BI model, on average, sets a stronger p_{2}^{ν} limit with no injected signal events	The most for the sing (Phase- The other
bution of the background indices for each detector type epresent the standard deviation and mean respectively. Dearing the performance of each model with simulated riments using synthetic data we find that: e single BI model, on average, has a stronger discovery ower, since it can reconstruct a larger portion of an ected signal event e uncorrelated BI model, on average, sets a stronger $\frac{17}{2}$ limit with no injected signal events e correlated BI model can reproduce the behaviour of e two extreme cases and offers intermediate discovery over and limit setting capabilities	The most for the sing (Phase- The other $\sum_{i=1}^{1000}$
bution of the background indices for each detector type epresent the standard deviation and mean respectively. During the performance of each model with simulated riments using synthetic data we find that: e single BI model, on average, has a stronger discovery ower, since it can reconstruct a larger portion of an ected signal event e uncorrelated BI model, on average, sets a stronger T_{2}^{ν} limit with no injected signal events e correlated BI model can reproduce the behaviour of e two extreme cases and offers intermediate discovery ower and limit setting capabilities the (median) sensitivity of all models assuming no signal ad using a uniform prior for <i>S</i> is $T_{1/2}^{0\nu} > 1.4 \cdot 10^{26}$ yr (90%)	The most for the sing (Phase- The other 1000 - 1500 - 1000 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
bution of the background indices for each detector type epresent the standard deviation and mean respectively. Dearing the performance of each model with simulated riments using synthetic data we find that: e single BI model, on average, has a stronger discovery ower, since it can reconstruct a larger portion of an ected signal event e uncorrelated BI model, on average, sets a stronger T_{2}^{ν} limit with no injected signal events e correlated BI model can reproduce the behaviour of e two extreme cases and offers intermediate discovery ower and limit setting capabilities the (median) sensitivity of all models assuming no signal ad using a uniform prior for <i>S</i> is $T_{1/2}^{0\nu} > 1.4 \cdot 10^{26}$ yr (90%) statistical analysis was performed using the Julia age BAT.jl [5].	The most for the sing (Phase- The other The other 2500 1500 1500 500 0 0.0000 P

[3] Agostini, M. et al., Results on Neutrinoless Double- β Decay of ⁷⁶Ge from

MAX-PLANCK-INSTITUT FUR PHYSIK

PRELIMINARY RESULTS

nalysis window we detect 13 events. After a y analysis of these data we cannot claim a signal. ving are preliminary results, obtained without the of systematic uncertainties in the analysis.

rior of the signal-rate S obtained from the Phase-I ysis [3] is used as a prior for the Phase-II data The Phase-I analysis was performed using both a nd a $1/\sqrt{S}$ prior for S up to $10^{-25} yr^{-1}$.

Signal rate [normalized to $10^{-26}yr^{-1}$]

ninary half-life limit extracted is the same for all nd it is a significant improvement with respect to Phase-II data release [4]:

orm prior) $T_{1/2}^{0\nu} > 1.4 \cdot 10^{26}$ yr (90% Cl)

prior) $T_{1/2}^{0\nu} > 2.3 \cdot 10^{26} \text{ yr (90\% Cl)}$

likely background index for the Phase-II analysis gle BI model is:

-II) BI = 5.2^{+1.6}_{-1.4} · 10⁻⁴ $\left[\frac{\text{cts}}{\text{keV}\cdot\text{kg}\cdot\text{yr}}\right]$ (68% SI)

models yield similar results for the BIs.

GERDA Experiment, Phys. Rev. Lett. 111, 12 (2013) M. et al., Probing Majorana neutrinos with double- β 365, 1445 (2019) et al., BAT.jl - A Bayesian Analysis Toolkit in Julia, doi: 10.5281/zenodo.2605312