CENNS-750: A Ton-Scale Liquid Argon Detector for CEvNS at the SNS

Benjamin Suh, for the COHERENT Collaboration
Indiana University, Bloomington

Coherent-Elastic Neutrino Nucleus Scattering (CEvNS)

- Neutral-current process first predicted in 1974 by D. Freedman
- Low energy neutrino exchanges Z0 boson with target nuclei
 - \(E_{\nu} \leq 50 \text{MeV} \)
 - \(E_{\text{max}} \approx 50 \text{keV} \)
- Need low-threshold and low-background detectors
- Cleanly predicted by Standard Model
- Deviations could indicate new physics

Various neutrino processes cross-sections. CENNS orders of magnitude greater than IBD and \(\nu_e \) scattering

COHERENT at the SNS

- Spallation Neutron Source at Oak Ridge National Laboratory
 - Highest flux of pulsed neutrinos in the world:
 - \(4.3 \times 10^7 \text{v/cm}^2/\text{s} \) at 20m
 - Timing used for background rejection
- Multiple detectors with target nuclei in basement of SNS, “neutrino alley”
 - Test \(N^2 \) dependence of cross-section
 - First observation of CEvNS in 2017, using CsI[Na] crystal scintillator
 - First observation of CEvNS on Ar in 2020
- See poster #49

Left: CEvNS cross-section vs. N
Above: Current and planned detectors at the SNS

CENNS-750

- Ton-scale single-phase liquid-argon detector
 - 610kg fiducial volume
 - TPB coated Teflon panels on sides
 - Planned same location as current CENNS-10
 - 27.5m from Hg target
- Currently in development phase
- Utilize lessons learned from building and running CENNS-10
- Expect same threshold as CENNS-10, ~20keVnr

CEvNS-750 and Dark Matter

- CEvNS is irreducible background for dark matter WIMP searches
- Development of CEvNS detection capabilities provides tools for direct dark matter WIMP searches
- Sub-GeV accelerator produced dark matter
- Also useful for sterile neutrino searches
- arXiv:1911.06422

Left: Direct dark matter searches with neutrino floor
Right: Predicted accelerator produced, sub-GeV dark matter signal in CENNS-750 after three years
Further Right: Expected constraints on accelerator produced, sub-GeV dark matter for three years running with CENNS-750

Acknowledgements

COHERENT is supported by and grateful for support from DOD NFF and HEP, NNSA, CNEC, and the Oak Ridge National Laboratory.

References

2. D. Ahlen et al. (COHERENT), Science, 373, 1123–1126 (2021)
3. D. Ahlen et al. (COHERENT), arXiv:1803.09183

Test chamber for wavelength shifting tests and Hg doping at ORNL. Could lead to reduced threshold.
IU student Jacob Zettlemoyer

Above: SPE spectrum from 3” Hamamatsu PMT at LN2 temperatures. Plan to test 20keVnr threshold
Left: Optical measurement of TPB coated materials. Could lead to reduced thresholds