

LBNF and DUNE

One of the physics drivers for the Deep Underground Neutrino Experiment (DUNE) is a precision measurement of δ_{CP} using the ν -beam produced by the Long Baseline Neutrino Facility (LBNF) at Fermilab. LBNF delivers a predictable ν and $\bar{\nu}$ flux to the DUNE Near (ND) and Far (FD) Detectors. The spectra of v_{μ} , v_e , \bar{v}_{μ} , & \bar{v}_e are compared at the ND/FD for ν -flavor appearance, disappearance. Uncertainties in hadron production & the beam focusing can affect the fluxes and subsequent δ_{CP} measurement.

- The scope of the work presented here is over LBNF beam-focusing uncertainties
- Beam-focusing uncertainties incorporate effects from the components that comprise the "beamline," including engineering tolerances of component designs, component placement, and other physical considerations.

- 1. Baffle
- Bafflet, Target, & Magnetic Focusing Horn A (Right)
- 3. Horn B
- 4. Horn C
- 5. Decay Pipe
- Not Shown: Hadron Absorber and Instrumentation

U.S. Target

Acknowledgements: Laura Fields & the DUNE Beam Interface Working Group (FermiLab); Tyler Rehak, James Minock, and Zev Imani (Drexel); Material Support from US Dept Of Energy Dept of Science **Citations**: 1) arXiv:2002.03005 DUNE Collaboration

Effects of LBNF Neutrino Beam Focusing Uncertainties on DUNE Neutrino Fluxes Pierce Weatherly (Drexel University) DEEP UNDERGROUND NEUTRINO EXPERIMENT on behalf of the DUNE Collaboration

LBNF Simulation (Updates)

LBNF beam simulation is Geant4 based and uses GDML files and g4 C++ geometries for establishing beamline component placements/materials. The last round of focusing uncertainties Far detector, ν -mode, ν_{μ} were determined for the —— Total focussing DUNE TDR¹ Horn current (3 kA)2020 DUNE TDR¹ (right), ⁻ (2020) 0.1Decay pipe radius (10 cm) Horn trans. offset (0.5 mm)which were limited in Beam offset X (0.45 mm) Target Density (0.4 g cm⁻ scope. Updates to the eg 0.05 ⊢ POT counting LBNF simulation and to the beamline design call

for update to focusing uncertainties. A more thorough assessment of uncertainties is also required. These updates include:

- Target: 2.2 m \rightarrow 1.5 m RAL cantilevered target
- **Engineering modifications to Horns**
- Simulate tilting, displacement of target, horns
- B-field effects from Horn conductor deformations
- Include NuMI-style Muon Monitors & Alcoves, & Retention of μ -Monitor info for beam tracking studies updated G4LBNF for fine control of output
- information retention: ~9x file-size reduction for flux determination.

Extraction of Uncertainties

Simulate 1e9 Protons-on-Target (POT) for the standard simulation sample, and \geq 25e7 POT with beam-focusing parameters varied by n standard deviations. The procedure for extracting uncertainties is as follows:

- Fit resulting flux changes for each energy bin
- The $\pm 1\sigma$ values are extracted from the best fit.
- The absolute value of their deviation from 1 is calculated averaged to obtain the uncertainty.
- Example for single energy bin (right) when horn currents are all varied simultaneously.
- quadrature

Results for ν -Beam Unoscillated ν_{μ} FD/ND Flux

Below: FD/ND focusing uncertainties from the target, horn placements Right: FD/ND focusing uncertainties: Assorted & Combined Placement

Orthogonal alignment parameters, i.e. x, y tilts, are treated as independent uncertainties and added in

Current Total Beam Focusing Uncertainties < 2% ~5 GeV structure due to edge of focusing system capture of v-beam. Horn Current, Decay Pipe Radius, & Combined Target+Horns Placements are dominant uncertainties.