

## Observation of the atmospheric neutrino flux with the first detection units of KM3NeT/ORCA

Luigi Antonio Fusco<sup>1+</sup>, Jannik Hofestädt<sup>2</sup>, Dimitris Stavropoulos<sup>3</sup> on behalf of the KM3neT Collaboration

<sup>1</sup> CPPM, Marseille <sup>2</sup> ECAP, Erlangen <sup>3</sup> NCSR Demokritos, Athens +luigi.fusco@cppm.in2p3.fr

## The KM3NeT Detector

**KM3NeT** [1] is the next generation large volume neutrino detector in the Mediterranean Sea. The **KM3NeT/ORCA** apparatus, currently being constructed off the coasts of Southern France, will be devoted to the study of neutrino physics using atmospheric neutrino oscillations.

**Figure 1**. Artist view of the KM3NeT design building block, made of 115 DUs, with a zoom on the DOMs, the fundamental constituent of the detector apparatus. A neutrino-induced muon producing Cherenkov light is also shown.





6 Detection Units (DUs, vertical strings hosting multi-PMT Digital Optical Modules, **DOM**s) currently taking аге data. The final detector configuration will be composed of 115 DUs, over a volume of ~8 Mton

**Figure 2**. 3-D event display of an event passing through the ORCA6 DU detector. The Cherenkov photons illuminating the PMTs are depticted together with the muon track track.

## Data sample and Neutrino selection

4.5 months of high-quality KM3NeT/ORCA data acquired with 4 active DUs between July 2019 and January 2020 have been considered. Neutrinoinduced track-like events, reconstructed as upward-going, allow for a 99%-pure neutrino sample with and event rate of  $2-3 \sqrt{day}$ .



neutrino event in the 4 ORCA DUs. Bottom: reconstructed zenith distribution before and after selection cuts.



## First neutrino oscillation results

A refined event selection [2] has been used to study neutrino oscillations. KM3NeT/ORCA data favours the hypothesis of oscillations at a significance level of roughly  $2\sigma$  by measuring the zenith-dependent differences in track-like event rates.



**<u>Figure 4</u>**. Effect of neutrino oscillations on the zenith distribution of the selected neutrino sample. Oscillations induce a ~30% decrease in the number of detected events, more evident for vertical upgoing reconstructed zenith.

Additional data, collected with 6 DUs, is being analysed; events reconstructed as **shower-like** are being included; **Particle Identification** is being implemented, aiming to improve the upcoming studies of neutrino oscillation physics [3].

<u>References</u>

[1] https://www.km3net.org [2] J. Hofestädt et al. (KM3NeT Collaboration), PoS (ICRC2019) 910 [3] B. Strandberg, S. Hallmann (KM3NeT Collaboration), PoS (ICRC2019) 1019