

ANTARES search for a stacking of point sources of neutrinos with 11 years of data J. Aublin for the ANTARES collaboration Université de Paris, CNRS, Astroparticule et Cosmologie, F-75006 Paris, France, France

ABSTRACT

A likelihood stacking method is used to assess the significance of a global excess of track-like neutrino events in correlation with the location of a list of astrophysical sources.

None of the tested catalog lead to a significant results, so upper limits on the flux per source are computed. However, a potential association between the blazar MG3 J225517+2409 detected in γ -ray by Fermi and 5 ANTARES events together with a high energy track detected by IceCube is reported. An a posteriori significance of $\leq 2.6\sigma$ is evaluated for the combination of ANTARES and IceCube data, when including time information.

METHOD

Extended maximum likelihood method:

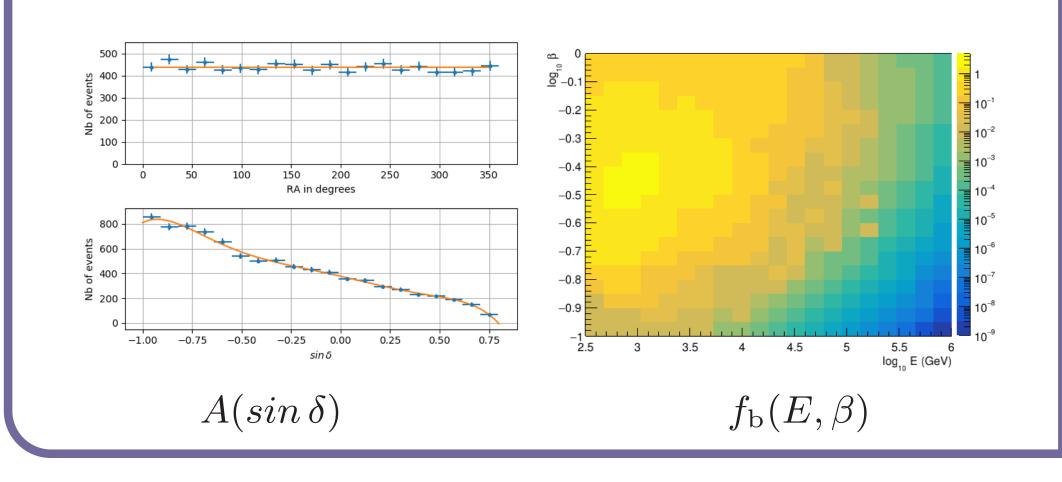
$$\ln \mathcal{L}(\mathbf{H}_1 || x) = \sum_{i}^{N} \ln \left[\mu_s S(x_i) + \mu_b B(x_i) \right] - \mu_s - \mu_b$$

with (μ_s, μ_b) fitted nb of signal/background events. Signal PDF for N_s sources is written as:

$$S(x_i) = \frac{1}{\sum w_j} \sum_{j=1}^{N_s} w_j s_j(x_i)$$
 (1)

where $s_i(x_i)$ is the Point Spread Function, depending on energy E_i and angular accuracy β_i of each event. The weight of the j^{th} source is defined as

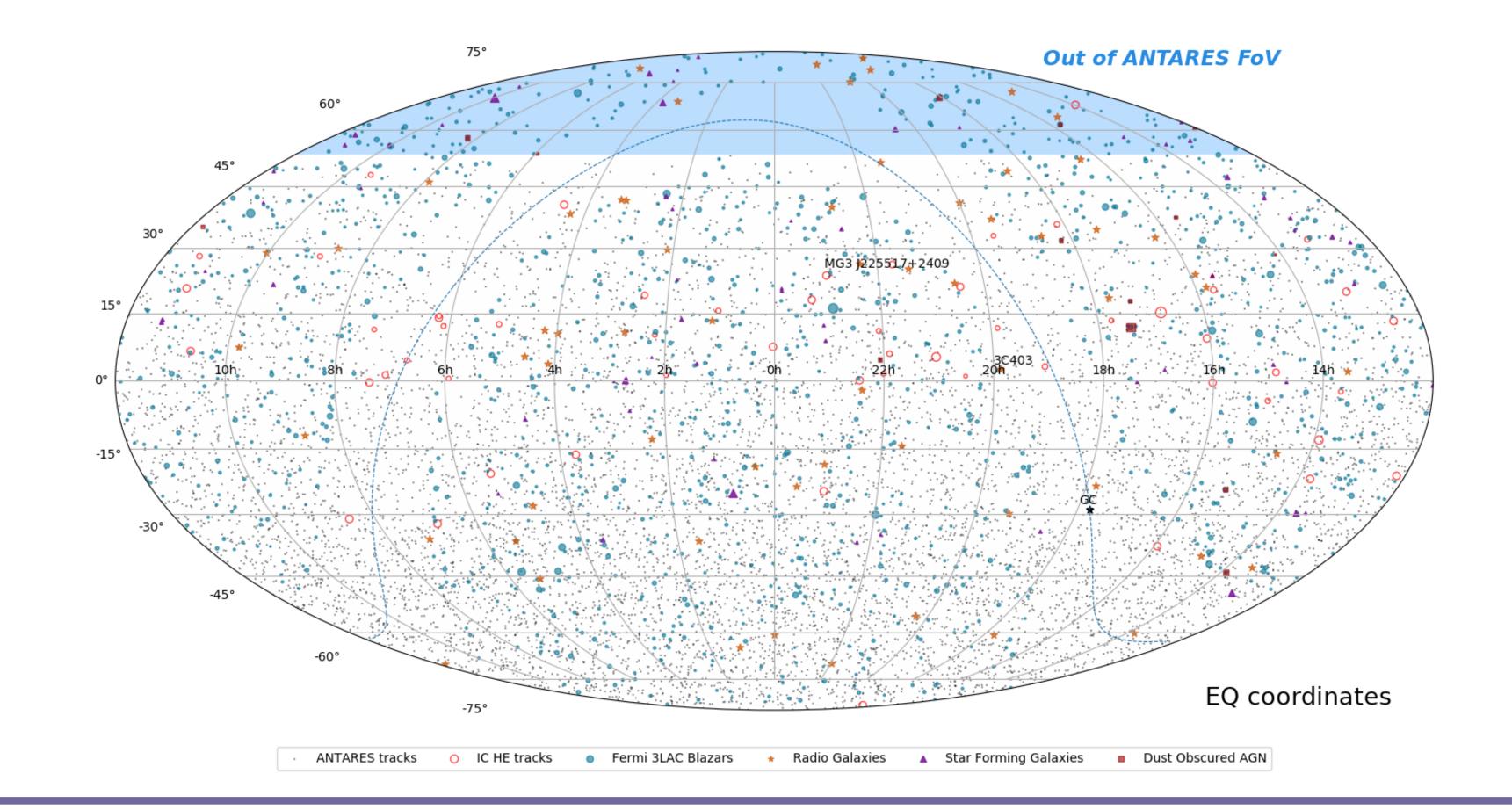
$$w_j = w_j^{\text{model}} \times \mathcal{A}(\delta_j)$$


where A is the acceptance, and with 2 assumptions:

- flux weighting: $w_i^{\text{model}} = \Phi_i^0 (\gamma, X)$
- equal weight: $w_i^{\text{model}} = 1$

Background PDF independent of the RA, and writes:

$$B(x_i) = A(\sin \delta_i) \times f_b(E_i, \beta_i) \tag{2}$$


where the distributions are built from real data:

TARGET SOURCES

- Fermi 3LAC blazar catalog (1420 objects) [1]
- Radio-galaxies catalog (65 objects) [3],
- IceCube HE tracks (56 events) [5], [6]

- Star Forming galaxies (64 objects) [2]
- Dust-obscured AGN (15 objects) [4]

RESULTS

The results of the likelihood stacking analysis are summarized in the following table.

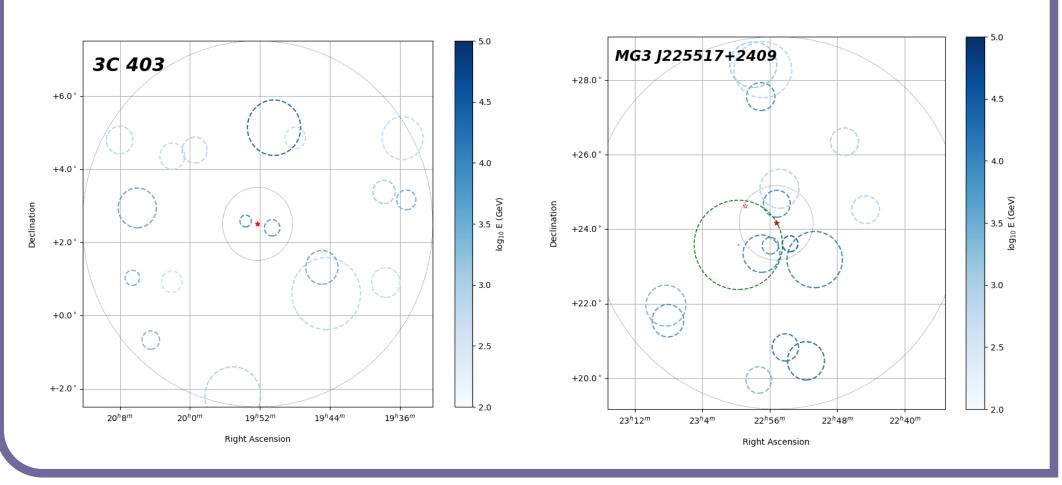
	Equal weighting				Flux weighting			
Catalog	TS	p	P	$\Phi_{90\%}^{ m UL}$	TS	p	P	$\Phi_{90\%}^{ m UL}$
Fermi 3LAC All Blazars	6.15	0.19	0.83	4.1	0.21	0.85	1.	2.0
Fermi 3LAC FSRQ	0.83	0.57	0.97	2.1	~ 0	~ 1	1.	1.7
Fermi 3LAC BL Lacs	8.3	0.088	0.64	4.6	0.84	0.56	0.96	1.9
Radio-galaxies	3.4	$4.8 \ 10^{-3}$	0.10	3.3	5.1	$6.9 \ 10^{-3}$	0.13	3.7
Star Forming Galaxies	0.030	0.37	0.93	1.9	~ 0	~ 1	1.	1.6
Obscured AGN	1.010^{-3}	0.73	0.98	1.4	~ 0	~ 1	1.	1.3
IC HE Tracks	0.77	0.05	0.49	0.96	_	_	-	-

90% C.L flux UL in diffuse E^{-2} flux for the (in units of 10^{-9} GeV⁻¹·cm⁻²·s⁻¹·sr⁻¹). For the IceCube HE tracks: UL in flux/source $(10^{-9} \text{ GeV}^{-1} \cdot \text{cm}^{-2} \cdot \text{s}^{-1})$.

• Most significant association: Radio-galaxies with equal weight, post-trial P=0.1.

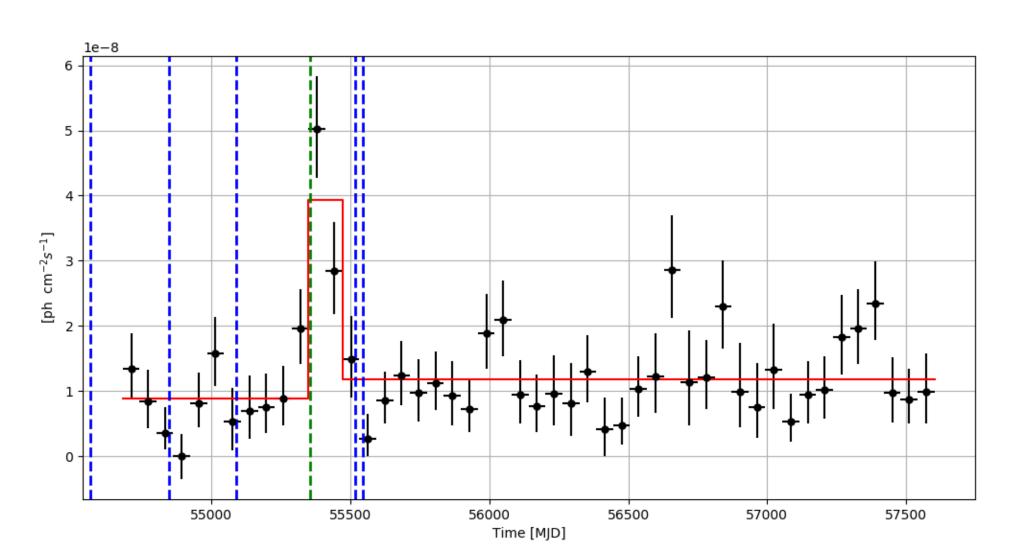
REFERENCES

- [1] M. Ackermann and M. Ajello et al (Fermi collaboration). ApJ, 810:14, 2015.
- [2] A. Abdo, M. Ackermann, and M. Ajello et al. (Fermi collaboration). *The Astrophysical Journal*, 755:164, 2012.
- [3] L.Bassani et al. MNRAS, 461:3165–3171, 2016.
- [4] G. Maggi et al. Physical Review D 94, 103007 (2016).
- [5] C. Haack and C. Wiebusch et al. (IceCube collaboration). ICRC 2017, PoS:1005, 2017.
- [6] M. G. et al. (IceCube Collaboration). (ICRC 2017), PoS:981, 2017.
- [7] A. Albert et al. (ANTARES Collaboration). Phys. Rev. D, 96:082001, 2017.
- [8] S. et al. Abdollahi. Fermi Large Area Telescope Fourth Source Catalog. APJS, 247(1):33, March 2020.


DATA SET

- Point Source (PS) sample 2007-2018
- Optimized for PS with E^{-2} spectrum
- 8754 track-like selected events
- Estimated ν energy $\in [\sim 100 \text{ GeV} 1 \text{ PeV}]$
- Median angular resolution $< 0.4^{\circ}$ above 10 TeV.

SEARCH FOR DOMINANT SOURCES


Search for low individual p-values for Fermi 3LAC & Radiogalaxies catalogs:

- Radio-galaxy 3C403: $p = 2.8 \sigma$ ($P = 1.6 \sigma$)
- Blazar J225517+2409: $p = 3.8 \, \sigma$ ($P = 1.4 \, \sigma$)

BLAZAR MG3 J225517+2409

A posteriori time-dependent analysis using the γ -ray light curve from Fermi 4FGL [8]:

Black points= γ -ray flux, red line= baesian block

- Flaring activity (flux $\times 5$ during ~ 4 months)
- 5 ANTARES events (blue lines) at $< 1^{\circ}$ of the source $(P = 1.4\sigma)$, but not during the flare.

Simple time clustering analysis around flare: $\tau = \frac{1}{N} \sum_{i=1}^{N=5} |t_i - t_F| \text{ gives } p = 2.3\sigma$

- Space & time p-value combination for ANTARES: $p_{\text{comb}} = p_{\text{space}} \times p_{\text{time}} \times (1 - \ln p_{\text{space}} \times p_{\text{time}}) = 2.3\sigma$
- 1 IceCube HE track at 1.1°, detected during flare (green line). Space-time likelihood: $p \sim 1.9\sigma$
- Combination ANTARES-IC gives a p-value: $p_{\text{Combined}} = p_{\text{ANT}} \times p_{\text{IC}} \times (1 - \ln p_{\text{ANT}} \times p_{\text{IC}}) = 2.6\sigma.$