Prospect of singlet scalar DM candidate in the EW scale- ν_R model Shreyashi Chakdar¹, Dilip Ghosh², P. Q. Hung ³, and Najimuddin Khan², # **Model and Framework** Neutrino mass is the only evidence of BSM Physics so far! - Neutrino (v) masses → popular "Seesaw mechanism" - In general Seesaw Mechanism: $$v_R \to SU(2)_L \times U(1)_Y$$ singlet • RH neutrino mass at GUT scale! NOT directly testable at LHC - Stand scenes: L-R : $m_D \sim \Lambda_{EW}$, $M_R \sim M_{WR}$, GUT: $M_R \sim \Lambda_{GUT}$ v_R 's are Sterile in standard scenarios - What if $M_R \sim \Lambda_{FW}$? Can v_R 's be non-sterile? #### **Solution:** • SM + Mirror Fermions + extended scalar sector Gauge Group: $SU(3)_{c} \times SU(2)_{w} \times U(1)_{v}$ # **Particle Content** 3. S. Chakdar, K. Ghosh, V. Hoang, P.Q Hung and S. Nandi, *Phys.Rev.D* 93 (2016) 3, 035007, arXiv: <u>1508.07318</u> #### **Extended Scalar sector** - Two doublets in each sector, coupling to up and down components - $\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$ (custodial global symmetry SU(2)) - $v_M \sim O(\Lambda_{EW}) \rightarrow A$ "large" triplet vev spoils $\rho = 1$ at Tree level - To restore the Custodial symmetry, a triplet Higgs scalar $\xi = (3, \frac{Y}{2} = 0)$ is added to the scalar sector such at $$\chi = \begin{pmatrix} \chi^0 & \xi^+ & \chi^{++} \\ \chi^- & \xi^0 & \chi^+ \\ \chi^{--} & \xi^- & \chi^{0*} \end{pmatrix}$$ - The Higgs potential has a global $SU(2)_L \times SU(2)_R$ symmetry $\rightarrow SU(2)_D$ - ullet The nature of EW symmetry breaking is intrinsically linked to Majorana mass of the non-sterile RH u - Physical scalars are grouped into Custodial $SU(2)_D$ states: 18 physical scalars grouped 5 + 3 + 3 + 3 + 3 + 1 Quintet $\rightarrow H_5^{\pm\pm}, H_5^{\pm}, H_5^0$ Triplet $\to H_3^{\pm}$, H_3^0 , $H_3^{\prime \pm}$, $H_3^{\prime 0}$, $H_M^{\prime \pm}$, H_M^0 , $H_M^{\prime \pm}$, $H_M^{\prime 0}$ Real Singlet $\rightarrow H_1^0, H_1'^0, H_{1M}^0, H_{1M}'^0, H_{1M}^{10}, H_1^{s0}$ Complex Singlet $\rightarrow A_s^0$ # Singlet States: $$\begin{split} \widetilde{H}_{s}^{0} &= \phi_{1}^{0r}, \ H_{2}^{0} = \phi_{2}^{0r}, \ H_{1M}^{0} = \phi_{1M}^{0r}, \ H_{2M}^{0} = \phi_{2M}^{0r}, \\ H_{S}^{0} &= \phi_{s}^{0r}, \ H_{1}^{0'} = \sqrt{\frac{2}{3}} \, \chi^{0r} + \sqrt{\frac{1}{3}} \, \zeta^{0}, \ \text{and} \ A_{s}^{0} = i \phi_{s}^{0i} \end{split}$$ #### Vev's satisfy: $$v_{\rm SM} = \sqrt{v_1^2 + v_{1M}^2 + v_2^2 + v_{2M}^2 + 8v_M^2} \equiv 246.221^2 \text{ GeV}^2$$ # Singlet Scalar - $A_S^0 = i \emptyset_S^{0i}$, the complex singlet is investigated to be DM candidate in this analysis - At tree level, the mass of the complex singlet scalar $A_s^0 = i \emptyset_s^{0i}$ is given by $$M_{A_s^0}^2 = 8 \lambda_{5c} (v_1 + v_2)(v_{1M} + v_{2M}).$$ In gen, \widetilde{H}_s^0 , H_2^0 , H_{1M}^0 , H_{2M}^0 , H_s^0 and H_1^{0r} components can mix through - 6 mass eigenstates are denoted by $\widetilde{H_s}$, \widetilde{H} , \widetilde{H}' , $\widetilde{H}^{\prime\prime}$, $\widetilde{H}^{\prime\prime\prime}$, $\widetilde{H}^{\prime\prime\prime\prime}$ - $\widetilde{H}_s \to \text{lightest (DM)}$, next heavier ones are \widetilde{H}' , $\widetilde{H}^{\prime\prime\prime}$, $\widetilde{H}^{\prime\prime\prime\prime}$, with heaviest state \widetilde{H}'''' and $\widetilde{H} \rightarrow 125$ GeV # Yukawa part of the Lagrangian is given by: $$\mathcal{L}_{y} = g_{l} \,\overline{\psi}_{L} \,\Phi_{1} \,l_{R} + g_{l}^{M} \,\overline{\psi}_{R}^{M} \,\Phi_{M1} \,l_{R}^{M} + g_{Sl} \,\overline{\psi}_{L} \,\psi_{R}^{M} \,\Phi_{s} + g_{M} \,\psi_{R}^{M,T} \,iC\sigma_{2} \,\tilde{\chi} \,\psi_{R}^{M}$$ $$+ g_{d} \,\overline{Q}_{L} \,\Phi_{1} \,d_{R} + g_{d}^{M} \,\overline{Q}_{R}^{M} \,\Phi_{M1} \,d_{R}^{M} - g_{u} \,\overline{Q}_{L} \,i\sigma_{2} \,\Phi_{2} \,u_{R} - g_{u}^{M} \,\overline{Q}_{R}^{M} \,i\sigma_{2} \,\Phi_{M2} \,u_{R}^{M}$$ $$+ g_{Sd} \,\overline{d}_{R} d_{L}^{M} \,\Phi_{s} + g_{Sq} \,\overline{Q}_{L} Q_{R}^{M} \,\Phi_{s} + g_{Su} \,\overline{u}_{R} u_{R}^{M} \,\Phi_{s} + \text{h.c}$$ # Benchmark Points and experimental data | | Benchmark Points and Branching of SM-like Higgs | | | | | | | | | | |------|--|----------------------------------|---|------------------------------|-------------------------------|---------------------------------------|--|--|---------------|--| | | $\Gamma^{\text{Total}}_{\text{SM-likeHiggs}}$ Branching of SM-like Higgs | | | | | | | | | | | | (MeV) | $Br(\widetilde{H} \to b\bar{b})$ | $Br(\widetilde{H} \to \tau \bar{\tau})$ | $Br(\widetilde{H} \to WW^*)$ | $Br(\widetilde{H}\to ZZ^*)$ | $Br(\widetilde{H} \to \gamma \gamma)$ | $Br(\widetilde{H} \to \widetilde{H}_s \widetilde{H}_s, A_s^0 A_s^0)$ | $Br(\widetilde{H} \to \text{Other BSM})$ | Cross-section | | | SM | ~ 4.0 | $5.66\mathrm{E}^{-01}$ | $6.21\mathrm{E}^{-02}$ | $2.26\mathrm{E}^{-01}$ | $2.81\mathrm{E}^{-02}$ | $2.28\mathrm{E}^{-03}$ | _ | _ | 1 | | | BP-3 | 5.481 | $6.912\mathrm{E}^{-01}$ | $\sim 8.561 \mathrm{E}^{-02}$ | $19.825\mathrm{E}^{-01}$ | $\sim 2.46 \mathrm{E}^{-02}$ | $\sim 1.96 \mathrm{E}^{-03}$ | $< 1 {\rm E}^{-06}$ | $< 1 \mathrm{E^{-06}}$ | 1.38 | | TABLE I: Branching Ratios for SM-like Higgs ($m_H \sim 125$ GeV) decaying through various SM and BSM channels for a model Benchmark Point | Signal Strength | Benchmark Points and Signal strength of SM-like Higgs | | | | | | | |--|---|------------------------|------------------------|------------------------|------------------------|--|--| | | $\mu_{bar{b}}$ | $\mu_{ auar{ au}}$ | μ_{WW} | μ_{ZZ} | $\mu_{\gamma\gamma}$ | | | | $\mu_{\text{Best-Fit}}$ (CERN-EP-2018-263) | $2.51^{+2.43}_{-2.01}$ | $1.05^{+0.53}_{-0.47}$ | $1.35^{+0.35}_{-0.21}$ | $1.22^{+0.23}_{-0.21}$ | $1.16^{+0.21}_{-0.18}$ | | | | $\mu_{\mathrm{BP-3}}$ | 1.70 | 1.91 | 1.214 | 1.211 | 1.19 | | | TABLE II: Signal Strengths for the Higgs-like Boson for the benchmark point examined in Table I # **Dark Matter** - The pseudo singlet scalar is the DM candidate (Mev-GeV mass range) - The main contribution to the DM effective annihilation cross-section comes from annihilation channel $A_s^0 A_s^0 \to SM SM$, (diagrams below) Relic density related to annihilation cross-section and decay lifetime Fig: Plot shows variation of relic density (Ωh^2) vs Dark matter mass. The red line signifies bounds coming from the recent direct detection xenon 1T data The blue band corresponds to allowed relic density region at 3σ From this plot the allowed parameter space belonging to this particular BP corresponds to 55-65 GeV mass range # Summary - Framework has Majorana and new mirror fermion masses within the reach of the current colliders - Complete scalar sector spectrum including heavier triplets, doublets and singlet Higgs states in conjunction with the current 125-GeV LHC data is analyzed - Prospect of the singlet scalar fulfilling the role of the DM candidate is investigated wrt the current bounds - EW ν_R scenario links neutrino mass, DM studies and Long-lived Particles (LLP) searches at the Collider #### **References:** - 1. P.Q Hung, Phys. Lett. B649 (2007) 275279, arXiv: 0612004 - 2. S. Chakdar, K. Ghosh, V. Hoang, P. Q. Hung and S. Nandi, Phys. Rev. D95 no. 1, (2017) 015014, arXiv: 1606.08502 - **Acknowledgements:**