Updated Event Selection for the PROSPECT Experiment

PROSPECT aims to measure highly enriched 235U reactor anti-neutrino energy spectrum with high precision and to model-independently search for eV^2 sterile neutrino oscillations. PROSPECT is an optical segmented detector filled with ~ 4 ton ^6Li-loaded liquid scintillator and deployed at $\sim 7\text{m}$ from compact reactor core in HFIR (High Flux Isotope Reactor).

In order to detect reactor anti-neutrinos via IBD (Inverse Beta Decay) processes, we developed an analysis framework based on the liquid scintillator PSD (Pulse Shape Discrimination) particle-identification and the temporal-spatial correlations in the IBD processes. Additional cosmogenic veto cuts mitigate high on-surface cosmogenic backgrounds.

Previously we reported 235U anti-neutrino spectrum and sterile neutrino oscillation result based on ~ 30 days’ reactor on data-taking. Here we describe improvements to the IBD event selection applied to a larger data set with approximately twice the IBD statistics.

Mini-abstract

Improved PROSPECT inverse beta decay event selection applied to 95 days reactor on data.

Experiment/Collaboration

PROSPECT collaboration

Primary author: LU, Xiaobin (Oak Ridge National Laboratory, The University of Tennessee, Knoxville)

Presenter: LU, Xiaobin (Oak Ridge National Laboratory, The University of Tennessee, Knoxville)

Session Classification: Poster Session 2